Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2404.09735v1
- Date: Mon, 15 Apr 2024 12:35:10 GMT
- Title: Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement
- Authors: Wenyi Lian, Wenjing Lian, Ziwei Luo,
- Abstract summary: In this work, we propose a novel method that shifts the focus from a deterministic pixel-by-pixel comparison to a statistical perspective.
The core idea is to introduce spatial entropy into the loss function to measure the distribution difference between predictions and targets.
Specifically, we equip the entropy with diffusion models and aim for superior accuracy and enhanced perceptual quality over l1 based noise matching loss.
- Score: 7.302792947244082
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image restoration, which aims to recover high-quality images from their corrupted counterparts, often faces the challenge of being an ill-posed problem that allows multiple solutions for a single input. However, most deep learning based works simply employ l1 loss to train their network in a deterministic way, resulting in over-smoothed predictions with inferior perceptual quality. In this work, we propose a novel method that shifts the focus from a deterministic pixel-by-pixel comparison to a statistical perspective, emphasizing the learning of distributions rather than individual pixel values. The core idea is to introduce spatial entropy into the loss function to measure the distribution difference between predictions and targets. To make this spatial entropy differentiable, we employ kernel density estimation (KDE) to approximate the probabilities for specific intensity values of each pixel with their neighbor areas. Specifically, we equip the entropy with diffusion models and aim for superior accuracy and enhanced perceptual quality over l1 based noise matching loss. In the experiments, we evaluate the proposed method for low light enhancement on two datasets and the NTIRE challenge 2024. All these results illustrate the effectiveness of our statistic-based entropy loss. Code is available at https://github.com/shermanlian/spatial-entropy-loss.
Related papers
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
We propose bit2bit, a new method for reconstructing high-quality image stacks at original resolution from sparse binary quantatemporal image data.
Inspired by recent work on Poisson denoising, we developed an algorithm that creates a dense image sequence from sparse binary photon data.
We present a novel dataset containing a wide range of real SPAD high-speed videos under various challenging imaging conditions.
arXiv Detail & Related papers (2024-10-30T17:30:35Z) - Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution [6.055006354743854]
We develop an algorithm that utilize a low-resolution image combined with features extracted from multiple low-quality images to generate a super-resolved image.
Unlike other algorithms, our approach recovers facial features without explicitly providing attribute information.
This is the first time multi-features combined with low-resolution images are used as conditioners to generate more reliable super-resolution images.
arXiv Detail & Related papers (2024-08-27T20:08:33Z) - Provably Robust Score-Based Diffusion Posterior Sampling for Plug-and-Play Image Reconstruction [31.503662384666274]
In science and engineering, the goal is to infer an unknown image from a small number of measurements collected from a known forward model describing certain imaging modality.
Motivated Score-based diffusion models, due to its empirical success, have emerged as an impressive candidate of an exemplary prior in image reconstruction.
arXiv Detail & Related papers (2024-03-25T15:58:26Z) - Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring [48.80983873199214]
We develop a data-driven approach to model the saturated pixels by a learned latent map.
Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem.
To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network.
arXiv Detail & Related papers (2023-08-10T12:53:30Z) - Single Image Depth Prediction Made Better: A Multivariate Gaussian Take [163.14849753700682]
We introduce an approach that performs continuous modeling of per-pixel depth.
Our method's accuracy (named MG) is among the top on the KITTI depth-prediction benchmark leaderboard.
arXiv Detail & Related papers (2023-03-31T16:01:03Z) - Image Restoration with Mean-Reverting Stochastic Differential Equations [9.245782611878752]
This paper presents a differential equation (SDE) approach for general-purpose image restoration.
By simulating the corresponding reverse-time SDE, we are able to restore the origin of the low-quality image.
Experiments show that our proposed method achieves highly competitive performance in quantitative comparisons on image deraining, deblurring, and denoising.
arXiv Detail & Related papers (2023-01-27T13:20:48Z) - Uncovering the Over-smoothing Challenge in Image Super-Resolution: Entropy-based Quantification and Contrastive Optimization [67.99082021804145]
We propose an explicit solution to the COO problem, called Detail Enhanced Contrastive Loss (DECLoss)
DECLoss utilizes the clustering property of contrastive learning to directly reduce the variance of the potential high-resolution distribution.
We evaluate DECLoss on multiple super-resolution benchmarks and demonstrate that it improves the perceptual quality of PSNR-oriented models.
arXiv Detail & Related papers (2022-01-04T08:30:09Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramids is a block-autoregressive approach with scale-specific representations to encode the joint distribution of image pixels.
It yields state-of-the-art results for density estimation on various image datasets, especially for high-resolution data.
For CelebA-HQ 1024 x 1024, we observe that the density estimates are improved to 44% of the baseline despite sampling speeds superior even to easily parallelizable flow-based models.
arXiv Detail & Related papers (2021-10-17T10:47:29Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - A Loss Function for Generative Neural Networks Based on Watson's
Perceptual Model [14.1081872409308]
To train Variational Autoencoders (VAEs) to generate realistic imagery requires a loss function that reflects human perception of image similarity.
We propose such a loss function based on Watson's perceptual model, which computes a weighted distance in frequency space and accounts for luminance and contrast masking.
In experiments, VAEs trained with the new loss function generated realistic, high-quality image samples.
arXiv Detail & Related papers (2020-06-26T15:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.