Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval
- URL: http://arxiv.org/abs/2404.09889v2
- Date: Thu, 6 Jun 2024 01:59:40 GMT
- Title: Is Table Retrieval a Solved Problem? Exploring Join-Aware Multi-Table Retrieval
- Authors: Peter Baile Chen, Yi Zhang, Dan Roth,
- Abstract summary: We introduce a method that uncovers useful join relations for any query and database during table retrieval.
Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
- Score: 52.592071689901196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieving relevant tables containing the necessary information to accurately answer a given question over tables is critical to open-domain question-answering (QA) systems. Previous methods assume the answer to such a question can be found either in a single table or multiple tables identified through question decomposition or rewriting. However, neither of these approaches is sufficient, as many questions require retrieving multiple tables and joining them through a join plan that cannot be discerned from the user query itself. If the join plan is not considered in the retrieval stage, the subsequent steps of reasoning and answering based on those retrieved tables are likely to be incorrect. To address this problem, we introduce a method that uncovers useful join relations for any query and database during table retrieval. We use a novel re-ranking method formulated as a mixed-integer program that considers not only table-query relevance but also table-table relevance that requires inferring join relationships. Our method outperforms the state-of-the-art approaches for table retrieval by up to 9.3% in F1 score and for end-to-end QA by up to 5.4% in accuracy.
Related papers
- KET-QA: A Dataset for Knowledge Enhanced Table Question Answering [63.56707527868466]
We propose to use a knowledge base (KB) as the external knowledge source for TableQA.
Every question requires the integration of information from both the table and the sub-graph to be answered.
We design a retriever-reasoner structured pipeline model to extract pertinent information from the vast knowledge sub-graph.
arXiv Detail & Related papers (2024-05-13T18:26:32Z) - MURRE: Multi-Hop Table Retrieval with Removal for Open-Domain Text-to-SQL [51.48239006107272]
Multi-hop table retrieval with removal (MURRE) removes previously retrieved information from the question to guide towards unretrieved relevant tables.
Experiments on two open-domain text-to- retriever datasets demonstrate an average improvement of 5.7% over the previous state-of-the-art results.
arXiv Detail & Related papers (2024-02-16T13:14:35Z) - Augment before You Try: Knowledge-Enhanced Table Question Answering via
Table Expansion [57.53174887650989]
Table question answering is a popular task that assesses a model's ability to understand and interact with structured data.
Existing methods either convert both the table and external knowledge into text, which neglects the structured nature of the table.
We propose a simple yet effective method to integrate external information in a given table.
arXiv Detail & Related papers (2024-01-28T03:37:11Z) - MultiTabQA: Generating Tabular Answers for Multi-Table Question
Answering [61.48881995121938]
Real-world queries are complex in nature, often over multiple tables in a relational database or web page.
Our model, MultiTabQA, not only answers questions over multiple tables, but also generalizes to generate tabular answers.
arXiv Detail & Related papers (2023-05-22T08:25:15Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - End-to-End Table Question Answering via Retrieval-Augmented Generation [19.89730342792824]
We introduce T-RAG, an end-to-end Table QA model, where a non-parametric dense vector index is fine-tuned jointly with BART, a parametric sequence-to-sequence model to generate answer tokens.
Given any natural language question, T-RAG utilizes a unified pipeline to automatically search through a table corpus to directly locate the correct answer from the table cells.
arXiv Detail & Related papers (2022-03-30T23:30:16Z) - CLTR: An End-to-End, Transformer-Based System for Cell Level Table
Retrieval and Table Question Answering [8.389189333083513]
We present the first end-to-end, transformer-based table question answering (QA) system.
It takes natural language questions and massive table corpus as inputs to retrieve the most relevant tables and locate the correct table cells to answer the question.
We introduce two new open-domain benchmarks, E2E_WTQ and E2E_GNQ, consisting of 2,005 natural language questions over 76,242 tables.
arXiv Detail & Related papers (2021-06-08T15:22:10Z) - FeTaQA: Free-form Table Question Answering [33.018256483762386]
We introduce FeTaQA, a new dataset with 10K Wikipedia-based table, question, free-form answer, supporting table cells pairs.
FeTaQA yields a more challenging table question answering setting because it requires generating free-form text answers after retrieval, inference, and integration of multiple discontinuous facts from a structured knowledge source.
arXiv Detail & Related papers (2021-04-01T09:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.