Autonomous Implicit Indoor Scene Reconstruction with Frontier Exploration
- URL: http://arxiv.org/abs/2404.10218v1
- Date: Tue, 16 Apr 2024 01:59:03 GMT
- Title: Autonomous Implicit Indoor Scene Reconstruction with Frontier Exploration
- Authors: Jing Zeng, Yanxu Li, Jiahao Sun, Qi Ye, Yunlong Ran, Jiming Chen,
- Abstract summary: Implicit neural representations have demonstrated significant promise for 3D scene reconstruction.
Recent works have extended their applications to autonomous implicit reconstruction through the Next Best View (NBV) based method.
We propose to incorporate frontier-based exploration tasks for global coverage with implicit surface uncertainty-based reconstruction tasks.
- Score: 10.975244524831696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural representations have demonstrated significant promise for 3D scene reconstruction. Recent works have extended their applications to autonomous implicit reconstruction through the Next Best View (NBV) based method. However, the NBV method cannot guarantee complete scene coverage and often necessitates extensive viewpoint sampling, particularly in complex scenes. In the paper, we propose to 1) incorporate frontier-based exploration tasks for global coverage with implicit surface uncertainty-based reconstruction tasks to achieve high-quality reconstruction. and 2) introduce a method to achieve implicit surface uncertainty using color uncertainty, which reduces the time needed for view selection. Further with these two tasks, we propose an adaptive strategy for switching modes in view path planning, to reduce time and maintain superior reconstruction quality. Our method exhibits the highest reconstruction quality among all planning methods and superior planning efficiency in methods involving reconstruction tasks. We deploy our method on a UAV and the results show that our method can plan multi-task views and reconstruct a scene with high quality.
Related papers
- Multi-robot autonomous 3D reconstruction using Gaussian splatting with Semantic guidance [18.631273098468384]
Implicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction.
Recent studies have expanded their applications in autonomous reconstruction through task assignment methods.
We propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework.
arXiv Detail & Related papers (2024-12-03T08:27:17Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
We propose a framework for reconstructing target objects from multi-view underwater images based on neural SDF.
We introduce hybrid geometric priors to optimize the reconstruction process, markedly enhancing the quality and efficiency of neural SDF reconstruction.
arXiv Detail & Related papers (2024-10-10T16:33:56Z) - PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction [49.7580491592023]
We propose PVP-Recon, a novel and effective sparse-view surface reconstruction method.
PVP-Recon starts initial surface reconstruction with as few as 3 views and progressively adds new views.
This progressive view planning progress is interleaved with a neural SDF-based reconstruction module.
arXiv Detail & Related papers (2024-09-09T10:06:34Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
We propose a two-stage training process, decouple view-dependent and view-independent colors, and leverage two novel consistency constraints to enhance detail reconstruction performance without requiring extra priors.
Experiments on synthetic and real-world datasets show the capability of reducing the interference from prior estimation errors.
arXiv Detail & Related papers (2023-09-18T13:05:23Z) - MM-3DScene: 3D Scene Understanding by Customizing Masked Modeling with
Informative-Preserved Reconstruction and Self-Distilled Consistency [120.9499803967496]
We propose a novel informative-preserved reconstruction, which explores local statistics to discover and preserve the representative structured points.
Our method can concentrate on modeling regional geometry and enjoy less ambiguity for masked reconstruction.
By combining informative-preserved reconstruction on masked areas and consistency self-distillation from unmasked areas, a unified framework called MM-3DScene is yielded.
arXiv Detail & Related papers (2022-12-20T01:53:40Z) - Uncertainty-Driven Active Vision for Implicit Scene Reconstruction [31.890470553111122]
We propose an uncertainty-driven active vision approach for implicit scene reconstruction.
We develop an occupancy-based reconstruction method which accurately represents scenes using either 2D or 3D supervision.
arXiv Detail & Related papers (2022-10-03T14:45:54Z) - Learning Reconstructability for Drone Aerial Path Planning [51.736344549907265]
We introduce the first learning-based reconstructability predictor to improve view and path planning for large-scale 3D urban scene acquisition using unmanned drones.
In contrast to previous approaches, our method learns a model that explicitly predicts how well a 3D urban scene will be reconstructed from a set of viewpoints.
arXiv Detail & Related papers (2022-09-21T08:10:26Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
Implicit neural representations have shown compelling results in offline 3D reconstruction and also recently demonstrated the potential for online SLAM systems.
This paper addresses two key challenges: 1) seeking a criterion to measure the quality of the candidate viewpoints for the view planning based on the new representations, and 2) learning the criterion from data that can generalize to different scenes instead of hand-crafting one.
Our method demonstrates significant improvements on various metrics for the rendered image quality and the geometry quality of the reconstructed 3D models when compared with variants using TSDF or reconstruction without view planning.
arXiv Detail & Related papers (2022-07-22T10:05:36Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.