HelixFold-Multimer: Elevating Protein Complex Structure Prediction to New Heights
- URL: http://arxiv.org/abs/2404.10260v2
- Date: Fri, 17 May 2024 11:47:10 GMT
- Title: HelixFold-Multimer: Elevating Protein Complex Structure Prediction to New Heights
- Authors: Xiaomin Fang, Jie Gao, Jing Hu, Lihang Liu, Yang Xue, Xiaonan Zhang, Kunrui Zhu,
- Abstract summary: We highlight the ongoing advancements of our protein complex structure prediction model, HelixFold-Multimer.
HelixFold-Multimer provides precise predictions for diverse protein complex structures, especially in therapeutic protein interactions.
HelixFold-Multimer is now available for public use on the PaddleHelix platform, offering both a general version and an antigen-antibody version.
- Score: 7.702856943171886
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While monomer protein structure prediction tools boast impressive accuracy, the prediction of protein complex structures remains a daunting challenge in the field. This challenge is particularly pronounced in scenarios involving complexes with protein chains from different species, such as antigen-antibody interactions, where accuracy often falls short. Limited by the accuracy of complex prediction, tasks based on precise protein-protein interaction analysis also face obstacles. In this report, we highlight the ongoing advancements of our protein complex structure prediction model, HelixFold-Multimer, underscoring its enhanced performance. HelixFold-Multimer provides precise predictions for diverse protein complex structures, especially in therapeutic protein interactions. Notably, HelixFold-Multimer achieves remarkable success in antigen-antibody and peptide-protein structure prediction, greatly surpassing AlphaFold 3. HelixFold-Multimer is now available for public use on the PaddleHelix platform, offering both a general version and an antigen-antibody version. Researchers can conveniently access and utilize this service for their development needs.
Related papers
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
We introduce a novel pre-training strategy for protein foundation models.
It emphasizes the interactions among amino acid residues to enhance the extraction of both short-range and long-range co-evolutionary features.
Trained on a large-scale protein sequence dataset, our model demonstrates superior generalization ability.
arXiv Detail & Related papers (2024-10-31T15:22:03Z) - ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding [22.610060675922536]
We introduce ProteinGPT, a state-of-the-art multi-modal protein chat system.
ProteinGPT seamlessly integrates protein sequence and structure encoders with linear projection layers for precise representation adaptation.
We train a large-scale dataset of 132,092 proteins with annotations, and optimize the instruction-tuning process using GPT-4o.
Experiments show that ProteinGPT can produce promising responses to proteins and their corresponding questions.
arXiv Detail & Related papers (2024-08-21T06:16:22Z) - Unifying Sequences, Structures, and Descriptions for Any-to-Any Protein Generation with the Large Multimodal Model HelixProtX [14.927425008686692]
We introduce HelixProtX, a system built upon the large multimodal model, to support any-to-any protein modality generation.
HelixProtX consistently achieves superior accuracy across a range of protein-related tasks, outperforming existing state-of-the-art models.
arXiv Detail & Related papers (2024-07-12T14:03:02Z) - A Protein Structure Prediction Approach Leveraging Transformer and CNN
Integration [4.909112037834705]
This paper adopts a two-dimensional fusion deep neural network model, DstruCCN, which uses Convolutional Neural Networks (CCN) and a supervised Transformer protein language model for single-sequence protein structure prediction.
The training features of the two are combined to predict the protein Transformer binding site matrix, and then the three-dimensional structure is reconstructed using energy minimization.
arXiv Detail & Related papers (2024-02-29T12:24:20Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
We present NeuralPLexer, a computational approach that can directly predict protein-ligand complex structures.
Our study suggests that a data-driven approach can capture the structural cooperativity between proteins and small molecules, showing promise in accelerating the design of enzymes, drug molecules, and beyond.
arXiv Detail & Related papers (2022-09-30T01:46:38Z) - DProQ: A Gated-Graph Transformer for Protein Complex Structure
Assessment [7.988932562855392]
DProQ is a gated neighborhood-modulating Graph Transformer (GGT) designed to predict the quality of 3D protein complex structures.
We incorporate node and edge gates within a novel Graph Transformer framework to control information flow during graph message passing.
Our rigorous experiments demonstrate that DProQ achieves state-of-the-art performance in ranking protein complex structures.
arXiv Detail & Related papers (2022-05-21T15:41:46Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Independent SE(3)-Equivariant Models for End-to-End Rigid Protein
Docking [57.2037357017652]
We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures.
We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position.
Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment.
arXiv Detail & Related papers (2021-11-15T18:46:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.