Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
- URL: http://arxiv.org/abs/2404.10274v2
- Date: Tue, 10 Sep 2024 07:21:27 GMT
- Title: Sparse Attention Regression Network Based Soil Fertility Prediction With Ummaso
- Authors: R V Raghavendra Rao, U Srinivasulu Reddy,
- Abstract summary: The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision.
The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset.
The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of imbalanced soil nutrient datasets significantly hampers accurate predictions of soil fertility. To tackle this, a new method is suggested in this research, combining Uniform Manifold Approximation and Projection (UMAP) with Least Absolute Shrinkage and Selection Operator (LASSO). The main aim is to counter the impact of uneven data distribution and improve soil fertility models' predictive precision. The model introduced uses Sparse Attention Regression, effectively incorporating pertinent features from the imbalanced dataset. UMAP is utilized initially to reduce data complexity, unveiling hidden structures and important patterns. Following this, LASSO is applied to refine features and enhance the model's interpretability. The experimental outcomes highlight the effectiveness of the UMAP and LASSO hybrid approach. The proposed model achieves outstanding performance metrics, reaching a predictive accuracy of 98%, demonstrating its capability in accurate soil fertility predictions. Additionally, it showcases a Precision of 91.25%, indicating its adeptness in identifying fertile soil instances accurately. The Recall metric stands at 90.90%, emphasizing the model's ability to capture true positive cases effectively.
Related papers
- Advancing Cross-Domain Generalizability in Face Anti-Spoofing: Insights, Design, and Metrics [10.631157315662607]
This paper presents a novel perspective for enhancing anti-spoofing performance in zero-shot data domain generalization.
One step forward to the previous frame-wise spoofing prediction, we introduce a nuanced metric calculation that aggregates frame-level probabilities for a video-wise prediction.
Our final model outperforms existing state-of-the-art methods across the datasets.
arXiv Detail & Related papers (2024-06-18T04:15:22Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
Causal effect estimation aims at estimating the Average Treatment Effect as well as the Conditional Average Treatment Effect of a treatment to an outcome from the available data.
We propose a new causal inference model, named C-XGBoost, for the prediction of potential outcomes.
arXiv Detail & Related papers (2024-03-31T17:43:37Z) - Supervised Contrastive Learning based Dual-Mixer Model for Remaining
Useful Life Prediction [3.081898819471624]
The Remaining Useful Life (RUL) prediction aims at providing an accurate estimate of the remaining time from the current predicting moment to the complete failure of the device.
To overcome the shortcomings of rigid combination for temporal and spatial features in most existing RUL prediction approaches, a spatial-temporal homogeneous feature extractor, named Dual-Mixer model, is proposed.
The effectiveness of the proposed method is validated through comparisons with other latest research works on the C-MAPSS dataset.
arXiv Detail & Related papers (2024-01-29T14:38:44Z) - Test-Time Adaptation Induces Stronger Accuracy and Agreement-on-the-Line [65.14099135546594]
Recent test-time adaptation (TTA) methods drastically strengthen the ACL and AGL trends in models, even in shifts where models showed very weak correlations before.
Our results show that by combining TTA with AGL-based estimation methods, we can estimate the OOD performance of models with high precision for a broader set of distribution shifts.
arXiv Detail & Related papers (2023-10-07T23:21:25Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Toward Fair Facial Expression Recognition with Improved Distribution
Alignment [19.442685015494316]
We present a novel approach to mitigate bias in facial expression recognition (FER) models.
Our method aims to reduce sensitive attribute information such as gender, age, or race, in the embeddings produced by FER models.
For the first time, we analyze the notion of attractiveness as an important sensitive attribute in FER models and demonstrate that FER models can indeed exhibit biases towards more attractive faces.
arXiv Detail & Related papers (2023-06-11T14:59:20Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
This work aims to assess how well a model performs under distribution shifts without using labels.
We use the nuclear norm that has been shown to be effective in characterizing both properties.
We show that the nuclear norm is more accurate and robust in accuracy than existing methods.
arXiv Detail & Related papers (2023-02-02T13:30:48Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.