Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning
- URL: http://arxiv.org/abs/2404.10552v1
- Date: Tue, 16 Apr 2024 13:22:54 GMT
- Title: Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning
- Authors: Xiao Wang, Tianze Chen, Xianjun Yang, Qi Zhang, Xun Zhao, Dahua Lin,
- Abstract summary: Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
- Score: 61.2224355547598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress. This includes both base models, which are pre-trained on extensive datasets without alignment, and aligned models, deliberately designed to align with ethical standards and human values. Contrary to the prevalent assumption that the inherent instruction-following limitations of base LLMs serve as a safeguard against misuse, our investigation exposes a critical oversight in this belief. By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions. To systematically assess these risks, we introduce a novel set of risk evaluation metrics. Empirical results reveal that the outputs from base LLMs can exhibit risk levels on par with those of models fine-tuned for malicious purposes. This vulnerability, requiring neither specialized knowledge nor training, can be manipulated by almost anyone, highlighting the substantial risk and the critical need for immediate attention to the base LLMs' security protocols.
Related papers
- Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
LLMs in particular are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model.
We propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process.
arXiv Detail & Related papers (2024-07-29T09:55:34Z) - Current state of LLM Risks and AI Guardrails [0.0]
Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount.
These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm.
This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques.
arXiv Detail & Related papers (2024-06-16T22:04:10Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - ALERT: A Comprehensive Benchmark for Assessing Large Language Models' Safety through Red Teaming [64.86326523181553]
ALERT is a large-scale benchmark to assess safety based on a novel fine-grained risk taxonomy.
It aims to identify vulnerabilities, inform improvements, and enhance the overall safety of the language models.
arXiv Detail & Related papers (2024-04-06T15:01:47Z) - Risk and Response in Large Language Models: Evaluating Key Threat Categories [6.436286493151731]
This paper explores the pressing issue of risk assessment in Large Language Models (LLMs)
By utilizing the Anthropic Red-team dataset, we analyze major risk categories, including Information Hazards, Malicious Uses, and Discrimination/Hateful content.
Our findings indicate that LLMs tend to consider Information Hazards less harmful, a finding confirmed by a specially developed regression model.
arXiv Detail & Related papers (2024-03-22T06:46:40Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
This paper collects the first open-source dataset to evaluate safeguards in large language models.
We train several BERT-like classifiers to achieve results comparable with GPT-4 on automatic safety evaluation.
arXiv Detail & Related papers (2023-08-25T14:02:12Z) - Evaluating the Instruction-Following Robustness of Large Language Models
to Prompt Injection [70.28425745910711]
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following.
This capability brings with it the risk of prompt injection attacks.
We evaluate the robustness of instruction-following LLMs against such attacks.
arXiv Detail & Related papers (2023-08-17T06:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.