VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time
- URL: http://arxiv.org/abs/2404.10667v2
- Date: Thu, 31 Oct 2024 07:43:14 GMT
- Title: VASA-1: Lifelike Audio-Driven Talking Faces Generated in Real Time
- Authors: Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang, Xin Tong, Baining Guo,
- Abstract summary: We introduce VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip.
VASA-1 is capable of not only generating lip movements that are exquisitely synchronized with the audio, but also producing a large spectrum of facial nuances and natural head motions.
- Score: 35.43018966749148
- License:
- Abstract: We introduce VASA, a framework for generating lifelike talking faces with appealing visual affective skills (VAS) given a single static image and a speech audio clip. Our premiere model, VASA-1, is capable of not only generating lip movements that are exquisitely synchronized with the audio, but also producing a large spectrum of facial nuances and natural head motions that contribute to the perception of authenticity and liveliness. The core innovations include a holistic facial dynamics and head movement generation model that works in a face latent space, and the development of such an expressive and disentangled face latent space using videos. Through extensive experiments including evaluation on a set of new metrics, we show that our method significantly outperforms previous methods along various dimensions comprehensively. Our method not only delivers high video quality with realistic facial and head dynamics but also supports the online generation of 512x512 videos at up to 40 FPS with negligible starting latency. It paves the way for real-time engagements with lifelike avatars that emulate human conversational behaviors.
Related papers
- Universal Facial Encoding of Codec Avatars from VR Headsets [32.60236093340087]
We present a method that can animate a photorealistic avatar in realtime from head-mounted cameras (HMCs) on a consumer VR headset.
We present a lightweight expression calibration mechanism that increases accuracy with minimal additional cost to run-time efficiency.
arXiv Detail & Related papers (2024-07-17T22:08:15Z) - EMO: Emote Portrait Alive -- Generating Expressive Portrait Videos with Audio2Video Diffusion Model under Weak Conditions [18.364859748601887]
We propose EMO, a novel framework that utilizes a direct audio-to-video synthesis approach.
Our method ensures seamless frame transitions and consistent identity preservation throughout the video, resulting in highly expressive and lifelike animations.
arXiv Detail & Related papers (2024-02-27T13:10:11Z) - FaceTalk: Audio-Driven Motion Diffusion for Neural Parametric Head Models [85.16273912625022]
We introduce FaceTalk, a novel generative approach designed for synthesizing high-fidelity 3D motion sequences of talking human heads from audio signal.
To the best of our knowledge, this is the first work to propose a generative approach for realistic and high-quality motion synthesis of human heads.
arXiv Detail & Related papers (2023-12-13T19:01:07Z) - Audio-Driven Talking Face Generation with Diverse yet Realistic Facial
Animations [61.65012981435094]
DIRFA is a novel method that can generate talking faces with diverse yet realistic facial animations from the same driving audio.
To accommodate fair variation of plausible facial animations for the same audio, we design a transformer-based probabilistic mapping network.
We show that DIRFA can generate talking faces with realistic facial animations effectively.
arXiv Detail & Related papers (2023-04-18T12:36:15Z) - GeneFace: Generalized and High-Fidelity Audio-Driven 3D Talking Face
Synthesis [62.297513028116576]
GeneFace is a general and high-fidelity NeRF-based talking face generation method.
A head-aware torso-NeRF is proposed to eliminate the head-torso problem.
arXiv Detail & Related papers (2023-01-31T05:56:06Z) - Diffused Heads: Diffusion Models Beat GANs on Talking-Face Generation [54.68893964373141]
Talking face generation has historically struggled to produce head movements and natural facial expressions without guidance from additional reference videos.
Recent developments in diffusion-based generative models allow for more realistic and stable data synthesis.
We present an autoregressive diffusion model that requires only one identity image and audio sequence to generate a video of a realistic talking human head.
arXiv Detail & Related papers (2023-01-06T14:16:54Z) - Audio2Head: Audio-driven One-shot Talking-head Generation with Natural
Head Motion [34.406907667904996]
We propose an audio-driven talking-head method to generate photo-realistic talking-head videos from a single reference image.
We first design a head pose predictor by modeling rigid 6D head movements with a motion-aware recurrent neural network (RNN)
Then, we develop a motion field generator to produce the dense motion fields from input audio, head poses, and a reference image.
arXiv Detail & Related papers (2021-07-20T07:22:42Z) - Audio- and Gaze-driven Facial Animation of Codec Avatars [149.0094713268313]
We describe the first approach to animate Codec Avatars in real-time using audio and/or eye tracking.
Our goal is to display expressive conversations between individuals that exhibit important social signals.
arXiv Detail & Related papers (2020-08-11T22:28:48Z) - Audio-driven Talking Face Video Generation with Learning-based
Personalized Head Pose [67.31838207805573]
We propose a deep neural network model that takes an audio signal A of a source person and a short video V of a target person as input.
We outputs a synthesized high-quality talking face video with personalized head pose.
Our method can generate high-quality talking face videos with more distinguishing head movement effects than state-of-the-art methods.
arXiv Detail & Related papers (2020-02-24T10:02:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.