Geometric Neural Operators (GNPs) for Data-Driven Deep Learning of Non-Euclidean Operators
- URL: http://arxiv.org/abs/2404.10843v1
- Date: Tue, 16 Apr 2024 18:43:27 GMT
- Title: Geometric Neural Operators (GNPs) for Data-Driven Deep Learning of Non-Euclidean Operators
- Authors: Blaine Quackenbush, Paul J. Atzberger,
- Abstract summary: We introduce Geometric Neural Operators (GNPs) for accounting for geometric contributions in data-driven deep learning of operators.
We show how GNPs can be used to estimate geometric properties, such as the metric and curvatures, and to approximate Partial Differential Equations.
The developed GNPs provide approaches for incorporating the roles of geometry in data-driven learning of operators.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Geometric Neural Operators (GNPs) for accounting for geometric contributions in data-driven deep learning of operators. We show how GNPs can be used (i) to estimate geometric properties, such as the metric and curvatures, (ii) to approximate Partial Differential Equations (PDEs) on manifolds, (iii) learn solution maps for Laplace-Beltrami (LB) operators, and (iv) to solve Bayesian inverse problems for identifying manifold shapes. The methods allow for handling geometries of general shape including point-cloud representations. The developed GNPs provide approaches for incorporating the roles of geometry in data-driven learning of operators.
Related papers
- Geometric Operator Learning with Optimal Transport [77.16909146519227]
We propose integrating optimal transport (OT) into operator learning for partial differential equations (PDEs) on complex geometries.<n>For 3D simulations focused on surfaces, our OT-based neural operator embeds the surface geometry into a 2D parameterized latent space.<n> Experiments with Reynolds-averaged Navier-Stokes equations (RANS) on the ShapeNet-Car and DrivAerNet-Car datasets show that our method achieves better accuracy and also reduces computational expenses.
arXiv Detail & Related papers (2025-07-26T21:28:25Z) - Fully Geometric Multi-Hop Reasoning on Knowledge Graphs with Transitive Relations [50.05281461410368]
We introduce GeometrE, a geometric embedding method for multi-hop reasoning.<n>It does not require learning the logical operations and enables full geometric interpretability.<n>Our experiments show that GeometrE outperforms current state-of-the-art methods on standard benchmark datasets.
arXiv Detail & Related papers (2025-05-18T11:17:50Z) - Geometry-Informed Neural Operator Transformer [0.8906214436849201]
This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions on arbitrary geometries.<n>The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
arXiv Detail & Related papers (2025-04-28T03:39:27Z) - Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators [0.0]
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs)
GNPs can serve as basal foundation models for use in obtaining geometric features.
We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds.
arXiv Detail & Related papers (2025-03-06T17:35:37Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - Reference Neural Operators: Learning the Smooth Dependence of Solutions of PDEs on Geometric Deformations [13.208548352092455]
For partial differential equations on domains of arbitrary shapes, existing works of neural operators attempt to learn a mapping from geometries to solutions.
We propose reference neural operators (RNO) to learn the smooth dependence of solutions on geometric deformations.
RNO outperforms baseline models in accuracy by a large lead and achieves up to 80% error reduction.
arXiv Detail & Related papers (2024-05-27T06:50:17Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and
Applications [67.33002207179923]
This paper presents a survey of data structures, models, and applications related to geometric GNNs.
We provide a unified view of existing models from the geometric message passing perspective.
We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
We propose a novel method for integrating geometric transformations within PINNs to robustly accommodate geometric variations.
We demonstrate the enhanced flexibility over traditional PINNs, especially under geometric variations.
The proposed framework presents an outlook for training deep neural operators over parametrized geometries.
arXiv Detail & Related papers (2023-11-27T15:47:33Z) - The Fisher-Rao geometry of CES distributions [50.50897590847961]
The Fisher-Rao information geometry allows for leveraging tools from differential geometry.
We will present some practical uses of these geometric tools in the framework of elliptical distributions.
arXiv Detail & Related papers (2023-10-02T09:23:32Z) - Parametrizing Product Shape Manifolds by Composite Networks [5.772786223242281]
We show that it is possible to learn an efficient neural network approximation for shape spaces with a special product structure.
Our proposed architecture leverages this structure by separately learning approximations for the low-dimensional factors and a subsequent combination.
arXiv Detail & Related papers (2023-02-28T15:31:23Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Tuning the Geometry of Graph Neural Networks [0.7614628596146599]
spatial graph convolution operators have been heralded as key to the success of Graph Neural Networks (GNNs)
We show that this aggregation operator is in fact tunable, and explicit regimes in which certain choices of operators -- and therefore, embedding geometries -- might be more appropriate.
arXiv Detail & Related papers (2022-07-12T23:28:03Z) - Geometric Methods for Sampling, Optimisation, Inference and Adaptive
Agents [102.42623636238399]
We identify fundamental geometric structures that underlie the problems of sampling, optimisation, inference and adaptive decision-making.
We derive algorithms that exploit these geometric structures to solve these problems efficiently.
arXiv Detail & Related papers (2022-03-20T16:23:17Z) - Semi-Riemannian Graph Convolutional Networks [36.09315878397234]
We develop a principled Semi-Riemannian GCN that first models data in semi-Riemannian manifold of constant nonzero curvature.
Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles.
arXiv Detail & Related papers (2021-06-06T14:23:34Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs)
We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
arXiv Detail & Related papers (2020-03-11T17:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.