UruDendro, a public dataset of cross-section images of Pinus taeda
- URL: http://arxiv.org/abs/2404.10856v1
- Date: Tue, 16 Apr 2024 19:10:40 GMT
- Title: UruDendro, a public dataset of cross-section images of Pinus taeda
- Authors: Henry Marichal, Diego Passarella, Christine Lucas, Ludmila Profumo, Verónica Casaravilla, María Noel Rocha Galli, Serrana Ambite, Gregory Randall,
- Abstract summary: This paper presents a publicly available database of 64 scanned images of transverse sections of commercially grown Pinus taeda trees from northern Uruguay, ranging from 17 to 24 years old.
The collection contains several challenging features for automatic ring detection, including illumination and surface preparation variation, fungal infection (blue stains), knot formation, missing cortex or interruptions in outer rings, and radial cracking.
This paper presents to the dendrochronology community one such method, Cross-Section Tree-Ring Detection (CS-TRD), which identifies and marks complete annual rings in cross-sections for tree species presenting a clear definition between early and latewood.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The automatic detection of tree-ring boundaries and other anatomical features using image analysis has progressed substantially over the past decade with advances in machine learning and imagery technology, as well as increasing demands from the dendrochronology community. This paper presents a publicly available database of 64 scanned images of transverse sections of commercially grown Pinus taeda trees from northern Uruguay, ranging from 17 to 24 years old. The collection contains several challenging features for automatic ring detection, including illumination and surface preparation variation, fungal infection (blue stains), knot formation, missing cortex or interruptions in outer rings, and radial cracking. This dataset can be used to develop and test automatic tree ring detection algorithms. This paper presents to the dendrochronology community one such method, Cross-Section Tree-Ring Detection (CS-TRD), which identifies and marks complete annual rings in cross-sections for tree species presenting a clear definition between early and latewood. We compare the CS-TRD performance against the ground truth manual delineation of all rings over the UruDendro dataset. The CS-TRD software identified rings with an average F-score of 89% and RMSE error of 5.27px for the entire database in less than 20 seconds per image. Finally, we propose a robust measure of the ring growth using the \emph{equivalent radius} of a circle having the same area enclosed by the detected tree ring. Overall, this study contributes to the dendrochronologist's toolbox of fast and low-cost methods to automatically detect rings in conifer species, particularly for measuring diameter growth rates and stem transverse area using entire cross-sections.
Related papers
- DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector [0.0]
Deep CS-TRD is a new automatic algorithm for detecting tree rings in whole cross-sections.
It substitutes the edge detection step of CS-TRD by a deep-learning-based approach (U-Net)
arXiv Detail & Related papers (2025-04-22T20:15:49Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.
This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - A Brief Analysis of the Iterative Next Boundary Detection Network for Tree Rings Delineation in Images of Pinus taeda [0.0]
INBD network operates in two stages: first, it segments the background, pith, and ring boundaries.
In the second stage, the image is transformed into polar coordinates, and ring boundaries are iteratively segmented from the pith to the bark.
The method achieves an F-Score of 77.5, a mAR of 0.540, and an ARAND of 0.205 on the evaluation set.
arXiv Detail & Related papers (2024-08-26T15:16:28Z) - Automatic Wood Pith Detector: Local Orientation Estimation and Robust Accumulation [0.0]
We present a fully automated technique for wood pith detection (APD)
The method estimates the ring's local orientations using the 2D structure tensor and finds the pith position.
We also present a variant (APD-PCL) that enhances the method's effectiveness when there are no clear tree ring patterns.
arXiv Detail & Related papers (2024-04-02T13:47:15Z) - Information-Theoretic Thresholds for Planted Dense Cycles [52.076657911275525]
We study a random graph model for small-world networks which are ubiquitous in social and biological sciences.
For both detection and recovery of the planted dense cycle, we characterize the information-theoretic thresholds in terms of $n$, $tau$, and an edge-wise signal-to-noise ratio $lambda$.
arXiv Detail & Related papers (2024-02-01T03:39:01Z) - CS-TRD: a Cross Sections Tree Ring Detection method [0.0]
The method depends on the parameters for the Canny Devernay edge detector (sigma), a resize factor, the number of rays, and the pith location.
CS-TRD is fully automated and achieves an F-Score of 89% in the UruDendro dataset (of Pinus taeda) and 97% in the Kennel dataset (of Abies alba) without specialized hardware requirements.
arXiv Detail & Related papers (2023-05-18T08:43:57Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
We present the first analysis of state-of-the-art semantic segmentation networks in the presence of geometric out-of-distribution (OOD) data.
We also address generalizability with a dedicated augmentation technique termed "Organ Transplantation"
Our scheme improves on the SOA DSC by up to 67 % (RGB) and 90 % (HSI) and renders performance on par with in-distribution performance on real OOD test data.
arXiv Detail & Related papers (2023-03-20T09:50:07Z) - Iterative Next Boundary Detection for Instance Segmentation of Tree
Rings in Microscopy Images of Shrub Cross Sections [58.720142291102135]
We propose a new iterative method which we term Iterative Next Boundary Detection (INBD)
It intuitively models the natural growth direction, starting from the center of the shrub cross section and detecting the next ring boundary in each step.
In our experiments, INBD shows superior performance to generic instance segmentation methods and is the only one with a built-in notion of chronological order.
arXiv Detail & Related papers (2022-12-06T14:49:41Z) - Orientation-guided Graph Convolutional Network for Bone Surface
Segmentation [51.51690515362261]
We propose an orientation-guided graph convolutional network to improve connectivity while segmenting the bone surface.
Our approach improves over the state-of-the-art methods by 5.01% in connectivity metric.
arXiv Detail & Related papers (2022-06-16T23:01:29Z) - MD-CSDNetwork: Multi-Domain Cross Stitched Network for Deepfake
Detection [80.83725644958633]
Current deepfake generation methods leave discriminative artifacts in the frequency spectrum of fake images and videos.
We present a novel approach, termed as MD-CSDNetwork, for combining the features in the spatial and frequency domains to mine a shared discriminative representation.
arXiv Detail & Related papers (2021-09-15T14:11:53Z) - A SAR speckle filter based on Residual Convolutional Neural Networks [68.8204255655161]
This work aims to present a novel method for filtering the speckle noise from Sentinel-1 data by applying Deep Learning (DL) algorithms, based on Convolutional Neural Networks (CNNs)
The obtained results, if compared with the state of the art, show a clear improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
arXiv Detail & Related papers (2021-04-19T14:43:07Z) - Automatic Tree Ring Detection using Jacobi Sets [0.9786690381850356]
We present novel automated methods for locating the pith of a tree disk, and ring boundaries.
Our methods use a combination of standard image processing techniques and tools from topological data analysis.
We evaluate the efficacy of our method for two different CT scans by comparing its results to manually located rings and centers.
arXiv Detail & Related papers (2020-10-17T01:28:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.