FedFa: A Fully Asynchronous Training Paradigm for Federated Learning
- URL: http://arxiv.org/abs/2404.11015v2
- Date: Sat, 20 Apr 2024 14:26:07 GMT
- Title: FedFa: A Fully Asynchronous Training Paradigm for Federated Learning
- Authors: Haotian Xu, Zhaorui Zhang, Sheng Di, Benben Liu, Khalid Ayed Alharthi, Jiannong Cao,
- Abstract summary: Federated learning is an efficient decentralized training paradigm for scaling the machine learning model training on a large number of devices.
Recent state-of-the-art solutions propose using semi-asynchronous approaches to mitigate the waiting time cost with guaranteed convergence.
We propose a full asynchronous training paradigm, called FedFa, which can guarantee model convergence and eliminate the waiting time completely.
- Score: 14.4313600357833
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning has been identified as an efficient decentralized training paradigm for scaling the machine learning model training on a large number of devices while guaranteeing the data privacy of the trainers. FedAvg has become a foundational parameter update strategy for federated learning, which has been promising to eliminate the effect of the heterogeneous data across clients and guarantee convergence. However, the synchronization parameter update barriers for each communication round during the training significant time on waiting, slowing down the training procedure. Therefore, recent state-of-the-art solutions propose using semi-asynchronous approaches to mitigate the waiting time cost with guaranteed convergence. Nevertheless, emerging semi-asynchronous approaches are unable to eliminate the waiting time completely. We propose a full asynchronous training paradigm, called FedFa, which can guarantee model convergence and eliminate the waiting time completely for federated learning by using a few buffered results on the server for parameter updating. Further, we provide theoretical proof of the convergence rate for our proposed FedFa. Extensive experimental results indicate our approach effectively improves the training performance of federated learning by up to 6x and 4x speedup compared to the state-of-the-art synchronous and semi-asynchronous strategies while retaining high accuracy in both IID and Non-IID scenarios.
Related papers
- FADAS: Towards Federated Adaptive Asynchronous Optimization [56.09666452175333]
Federated learning (FL) has emerged as a widely adopted training paradigm for privacy-preserving machine learning.
This paper introduces federated adaptive asynchronous optimization, named FADAS, a novel method that incorporates asynchronous updates into adaptive federated optimization with provable guarantees.
We rigorously establish the convergence rate of the proposed algorithms and empirical results demonstrate the superior performance of FADAS over other asynchronous FL baselines.
arXiv Detail & Related papers (2024-07-25T20:02:57Z) - FedStaleWeight: Buffered Asynchronous Federated Learning with Fair Aggregation via Staleness Reweighting [9.261784956541641]
Asynchronous Federated Learning (AFL) methods have emerged as promising alternatives to their synchronous counterparts by the slowest agent.
AFL model training heavily towards agents who can produce updates faster, leaving slower agents behind.
We introduce FedStaleWeight, an algorithm addressing in aggregating asynchronous client updates by employing average staleness to compute fair re-weightings.
arXiv Detail & Related papers (2024-06-05T02:52:22Z) - FedAST: Federated Asynchronous Simultaneous Training [27.492821176616815]
Federated Learning (FL) enables devices or clients to collaboratively train machine learning (ML) models without sharing their private data.
Much of the existing work in FL focuses on efficiently learning a model for a single task.
In this paper, we propose simultaneous training of multiple FL models using a common set of datasets.
arXiv Detail & Related papers (2024-06-01T05:14:20Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Federated Learning based on Pruning and Recovery [0.0]
This framework integrates asynchronous learning algorithms and pruning techniques.
It addresses the inefficiencies of traditional federated learning algorithms in scenarios involving heterogeneous devices.
It also tackles the staleness issue and inadequate training of certain clients in asynchronous algorithms.
arXiv Detail & Related papers (2024-03-16T14:35:03Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Take History as a Mirror in Heterogeneous Federated Learning [9.187993085263209]
Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data.
In this work, we propose a novel asynchronous FL framework called Federated Historical Learning (FedHist)
FedHist effectively addresses the challenges posed by both Non-IID data and gradient staleness.
arXiv Detail & Related papers (2023-12-16T11:40:49Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - FedSkip: Combatting Statistical Heterogeneity with Federated Skip
Aggregation [95.85026305874824]
We introduce a data-driven approach called FedSkip to improve the client optima by periodically skipping federated averaging and scattering local models to the cross devices.
We conduct extensive experiments on a range of datasets to demonstrate that FedSkip achieves much higher accuracy, better aggregation efficiency and competing communication efficiency.
arXiv Detail & Related papers (2022-12-14T13:57:01Z) - Semi-Synchronous Personalized Federated Learning over Mobile Edge
Networks [88.50555581186799]
We propose a semi-synchronous PFL algorithm, termed as Semi-Synchronous Personalized FederatedAveraging (PerFedS$2$), over mobile edge networks.
We derive an upper bound of the convergence rate of PerFedS2 in terms of the number of participants per global round and the number of rounds.
Experimental results verify the effectiveness of PerFedS2 in saving training time as well as guaranteeing the convergence of training loss.
arXiv Detail & Related papers (2022-09-27T02:12:43Z) - Speeding up Heterogeneous Federated Learning with Sequentially Trained
Superclients [19.496278017418113]
Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing.
This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity.
We propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way.
arXiv Detail & Related papers (2022-01-26T12:33:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.