TaCOS: Task-Specific Camera Optimization with Simulation
- URL: http://arxiv.org/abs/2404.11031v2
- Date: Thu, 18 Apr 2024 01:10:44 GMT
- Title: TaCOS: Task-Specific Camera Optimization with Simulation
- Authors: Chengyang Yan, Donald G. Dansereau,
- Abstract summary: We introduce a novel end-to-end optimization approach for co-designing a camera with specific robotic tasks.
The proposed method leverages recent computer graphics techniques and physical camera characteristics to prototype the camera in software.
We validate the accuracy of our camera simulation by comparing it with physical cameras, and demonstrate the design of cameras with stronger performance than common off-the-shelf alternatives.
- Score: 2.3020018305241337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of robots in their applications heavily depends on the quality of sensory input. However, designing sensor payloads and their parameters for specific robotic tasks is an expensive process that requires well-established sensor knowledge and extensive experiments with physical hardware. With cameras playing a pivotal role in robotic perception, we introduce a novel end-to-end optimization approach for co-designing a camera with specific robotic tasks by combining derivative-free and gradient-based optimizers. The proposed method leverages recent computer graphics techniques and physical camera characteristics to prototype the camera in software, simulate operational environments and tasks for robots, and optimize the camera design based on the desired tasks in a cost-effective way. We validate the accuracy of our camera simulation by comparing it with physical cameras, and demonstrate the design of cameras with stronger performance than common off-the-shelf alternatives. Our approach supports the optimization of both continuous and discrete camera parameters, manufacturing constraints, and can be generalized to a broad range of camera design scenarios including multiple cameras and unconventional cameras. This work advances the fully automated design of cameras for specific robotics tasks.
Related papers
- Redundancy-Aware Camera Selection for Indoor Scene Neural Rendering [54.468355408388675]
We build a similarity matrix that incorporates both the spatial diversity of the cameras and the semantic variation of the images.
We apply a diversity-based sampling algorithm to optimize the camera selection.
We also develop a new dataset, IndoorTraj, which includes long and complex camera movements captured by humans in virtual indoor environments.
arXiv Detail & Related papers (2024-09-11T08:36:49Z) - CinePreGen: Camera Controllable Video Previsualization via Engine-powered Diffusion [29.320516135326546]
CinePreGen is a visual previsualization system enhanced with engine-powered diffusion.
It features a novel camera and storyboard interface that offers dynamic control, from global to local camera adjustments.
arXiv Detail & Related papers (2024-08-30T17:16:18Z) - Microsaccade-inspired Event Camera for Robotics [42.27082276343167]
We design an event-based perception system capable of simultaneously maintaining low reaction time and stable texture.
The geometrical optics of the rotating wedge prism allows for algorithmic compensation of the additional rotational motion.
Various real-world experiments demonstrate the potential of the system to facilitate robotics perception both for low-level and high-level vision tasks.
arXiv Detail & Related papers (2024-05-28T02:49:46Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
We introduce a novel methodology that extends Pose Graph Optimization techniques.
We consider the bipartite graph encompassing cameras, object poses evolving dynamically, and camera-object relative transformations at each time step.
Our framework retains compatibility with traditional PGO solvers, but its efficacy benefits from a custom-tailored optimization scheme.
arXiv Detail & Related papers (2024-03-25T17:47:03Z) - Optimizing Camera Configurations for Multi-View Pedestrian Detection [21.89117952343898]
In this work, we present a novel solution that features a transformer-based camera configuration generator.
Using reinforcement learning, this generator autonomously explores vast combinations within the action space and searches for configurations that give the highest detection accuracy.
Across multiple simulation scenarios, the configurations generated by our transformer-based model consistently outperform random search, optimization, and configurations designed by human experts.
arXiv Detail & Related papers (2023-12-04T18:59:02Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - DeProCams: Simultaneous Relighting, Compensation and Shape
Reconstruction for Projector-Camera Systems [91.45207885902786]
We propose a novel end-to-end trainable model named DeProCams to learn the photometric and geometric mappings of ProCams.
DeProCams explicitly decomposes the projector-camera image mappings into three subprocesses: shading attributes estimation, rough direct light estimation and photorealistic neural rendering.
In our experiments, DeProCams shows clear advantages over previous arts with promising quality and being fully differentiable.
arXiv Detail & Related papers (2020-03-06T05:49:16Z) - Redesigning SLAM for Arbitrary Multi-Camera Systems [51.81798192085111]
Adding more cameras to SLAM systems improves robustness and accuracy but complicates the design of the visual front-end significantly.
In this work, we aim at an adaptive SLAM system that works for arbitrary multi-camera setups.
We adapt a state-of-the-art visual-inertial odometry with these modifications, and experimental results show that the modified pipeline can adapt to a wide range of camera setups.
arXiv Detail & Related papers (2020-03-04T11:44:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.