Offset Unlearning for Large Language Models
- URL: http://arxiv.org/abs/2404.11045v1
- Date: Wed, 17 Apr 2024 03:39:51 GMT
- Title: Offset Unlearning for Large Language Models
- Authors: James Y. Huang, Wenxuan Zhou, Fei Wang, Fred Morstatter, Sheng Zhang, Hoifung Poon, Muhao Chen,
- Abstract summary: Unlearning has emerged as a potential remedy for Large Language Models affected by problematic training data.
We propose $delta$-unlearning, an offset unlearning framework for black-box LLMs.
Experiments demonstrate that $delta$-unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks.
- Score: 49.851093293780615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the strong capabilities of Large Language Models (LLMs) to acquire knowledge from their training corpora, the memorization of sensitive information in the corpora such as copyrighted, harmful, and private content has led to ethical and legal concerns. In response to these challenges, unlearning has emerged as a potential remedy for LLMs affected by problematic training data. However, previous unlearning techniques are either not applicable to black-box LLMs due to required access to model internal weights, or violate data protection principles by retaining sensitive data for inference-time correction. We propose $\delta$-unlearning, an offset unlearning framework for black-box LLMs. Instead of tuning the black-box LLM itself, $\delta$-unlearning learns the logit offset needed for unlearning by contrasting the logits from a pair of smaller models. Experiments demonstrate that $\delta$-unlearning can effectively unlearn target data while maintaining similar or even stronger performance on general out-of-forget-scope tasks. $\delta$-unlearning also effectively incorporates different unlearning algorithms, making our approach a versatile solution to adapting various existing unlearning algorithms to black-box LLMs.
Related papers
- Towards Robust Evaluation of Unlearning in LLMs via Data Transformations [17.927224387698903]
Large Language Models (LLMs) have shown to be a great success in a wide range of applications ranging from regular NLP-based use cases to AI agents.
In recent times research in the area of Machine Unlearning (MUL) has become active.
Main idea is to force LLMs to forget (unlearn) certain information (e.g., PII) without suffering from performance loss on regular tasks.
arXiv Detail & Related papers (2024-11-23T07:20:36Z) - WAGLE: Strategic Weight Attribution for Effective and Modular Unlearning in Large Language Models [26.07431044262102]
This paper explores how model weights interact with unlearning processes in large language models (LLMs)
We design the weight attribution-guided LLM unlearning method, WAGLE, which unveils the interconnections between 'influence' of weights and 'influence' of data to forget and retain.
arXiv Detail & Related papers (2024-10-23T02:22:07Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - MoExtend: Tuning New Experts for Modality and Task Extension [61.29100693866109]
MoExtend is an effective framework designed to streamline the modality adaptation and extension of Mixture-of-Experts (MoE) models.
MoExtend seamlessly integrates new experts into pre-trained MoE models, endowing them with novel knowledge without the need to tune pretrained models.
arXiv Detail & Related papers (2024-08-07T02:28:37Z) - Split, Unlearn, Merge: Leveraging Data Attributes for More Effective Unlearning in LLMs [18.629717934007513]
"SPlit, UNlearn, MerGE" (SPUNGE) is a framework that can be used with any unlearning method to amplify its effectiveness.
We empirically demonstrate that SPUNGE significantly improves the performance of two recent unlearning methods on state-of-the-art LLMs.
arXiv Detail & Related papers (2024-06-17T17:35:52Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.