Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model
- URL: http://arxiv.org/abs/2404.11046v1
- Date: Wed, 17 Apr 2024 03:42:48 GMT
- Title: Lightweight Unsupervised Federated Learning with Pretrained Vision Language Model
- Authors: Hao Yan, Yuhong Guo,
- Abstract summary: Federated learning aims to train a collective model from physically isolated clients while safeguarding the privacy of users' data.
We propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication.
Our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods.
- Score: 32.094290282897894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning aims to tackle the ``isolated data island" problem, where it trains a collective model from physically isolated clients while safeguarding the privacy of users' data. However, supervised federated learning necessitates that each client labels their data for training, which can be both time-consuming and resource-intensive, and may even be impractical for edge devices. Moreover, the training and transmission of deep models present challenges to the computation and communication capabilities of the clients. To address these two inherent challenges in supervised federated learning, we propose a novel lightweight unsupervised federated learning approach that leverages unlabeled data on each client to perform lightweight model training and communication by harnessing pretrained vision-language models, such as CLIP. By capitalizing on the zero-shot prediction capability and the well-trained image encoder of the pre-trained CLIP model, we have carefully crafted an efficient and resilient self-training approach. This method refines the initial zero-shot predicted pseudo-labels of unlabeled instances through the sole training of a linear classifier on top of the fixed image encoder. Additionally, to address data heterogeneity within each client, we propose a class-balanced text feature sampling strategy for generating synthetic instances in the feature space to support local training. Experiments are conducted on multiple benchmark datasets. The experimental results demonstrate that our proposed method greatly enhances model performance in comparison to CLIP's zero-shot predictions and even outperforms supervised federated learning benchmark methods given limited computational and communication overhead.
Related papers
- Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Exploring One-shot Semi-supervised Federated Learning with A Pre-trained Diffusion Model [40.83058938096914]
We propose FedDISC, a Federated Diffusion-Inspired Semi-supervised Co-training method.
We first extract prototypes of the labeled server data and use these prototypes to predict pseudo-labels of the client data.
For each category, we compute the cluster centroids and domain-specific representations to signify the semantic and stylistic information of their distributions.
These representations are sent back to the server, which uses the pre-trained to generate synthetic datasets complying with the client distributions and train a global model on it.
arXiv Detail & Related papers (2023-05-06T14:22:33Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
Federated learning provides a communication-efficient and privacy-preserving training process.
Standard federated learning techniques that naively minimize an average loss function are vulnerable to data corruptions.
We propose Auto-weighted Robust Federated Learning (arfl) to provide robustness against corrupted data sources.
arXiv Detail & Related papers (2021-01-14T21:54:55Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.