GhostNetV3: Exploring the Training Strategies for Compact Models
- URL: http://arxiv.org/abs/2404.11202v2
- Date: Mon, 22 Apr 2024 02:46:44 GMT
- Title: GhostNetV3: Exploring the Training Strategies for Compact Models
- Authors: Zhenhua Liu, Zhiwei Hao, Kai Han, Yehui Tang, Yunhe Wang,
- Abstract summary: We introduce a strong training strategy for compact models.
We find that the appropriate designs of re- parameterization and knowledge distillation are crucial for training high-performance compact models.
equipped with our strategy, GhostNetV3 1.3$times$ achieves a top-1 accuracy of 79.1% with only 269M FLOPs and a latency of 14.46ms on mobile devices.
- Score: 41.63605520952545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compact neural networks are specially designed for applications on edge devices with faster inference speed yet modest performance. However, training strategies of compact models are borrowed from that of conventional models at present, which ignores their difference in model capacity and thus may impede the performance of compact models. In this paper, by systematically investigating the impact of different training ingredients, we introduce a strong training strategy for compact models. We find that the appropriate designs of re-parameterization and knowledge distillation are crucial for training high-performance compact models, while some commonly used data augmentations for training conventional models, such as Mixup and CutMix, lead to worse performance. Our experiments on ImageNet-1K dataset demonstrate that our specialized training strategy for compact models is applicable to various architectures, including GhostNetV2, MobileNetV2 and ShuffleNetV2. Specifically, equipped with our strategy, GhostNetV3 1.3$\times$ achieves a top-1 accuracy of 79.1% with only 269M FLOPs and a latency of 14.46ms on mobile devices, surpassing its ordinarily trained counterpart by a large margin. Moreover, our observation can also be extended to object detection scenarios. PyTorch code and checkpoints can be found at https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv3_pytorch.
Related papers
- Comparative Analysis of Lightweight Deep Learning Models for Memory-Constrained Devices [0.0]
Five state-of-the-art architectures are benchmarked across three diverse datasets: CIFAR-10, CIFAR-100, and Tiny ImageNet.<n>The models are assessed using four key performance metrics: classification accuracy, inference time, floating-point operations (FLOPs), and model size.
arXiv Detail & Related papers (2025-05-06T08:36:01Z) - ATOM: Asynchronous Training of Massive Models for Deep Learning in a Decentralized Environment [7.916080032572087]
atom is a resilient distributed training framework designed for asynchronous training of vast models in a decentralized setting.
atom aims to accommodate a complete LLM on one host (peer) through seamlessly model swapping and concurrently trains multiple copies across various peers to optimize training throughput.
Our experiments using different GPT-3 model configurations reveal that, in scenarios with suboptimal network connections, atom can enhance training efficiency up to $20 times$ when juxtaposed with the state-of-the-art decentralized pipeline parallelism approaches.
arXiv Detail & Related papers (2024-03-15T17:43:43Z) - MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training [17.158498267947877]
We introduce MobileCLIP, a new family of efficient image-text models optimized for runtime performance.
MobileCLIP uses knowledge transfer from an image captioning model and an ensemble of strong CLIP encoders to improve the accuracy of efficient models.
Our approach avoids train-time compute overhead by storing the additional knowledge in a reinforced dataset.
arXiv Detail & Related papers (2023-11-28T18:55:42Z) - Stitched ViTs are Flexible Vision Backbones [51.441023711924835]
We are inspired by stitchable neural networks (SN-Net) to produce a single model that covers richworks by stitching pretrained model families.
We introduce SN-Netv2, a systematically improved model stitching framework to facilitate downstream task adaptation.
SN-Netv2 demonstrates superior performance over SN-Netv1 on downstream dense predictions and shows strong ability as a flexible vision backbone.
arXiv Detail & Related papers (2023-06-30T22:05:34Z) - Deep Model Assembling [31.88606253639418]
This paper studies a divide-and-conquer strategy to train large models.
It divides a large model into smaller modules, training them independently, and reassembling the trained modules to obtain the target model.
We introduce a global, shared meta model to implicitly link all the modules together.
This enables us to train highly compatible modules that collaborate effectively when they are assembled together.
arXiv Detail & Related papers (2022-12-08T08:04:06Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - A Simple Structure For Building A Robust Model [7.8383976168377725]
We propose a simple architecture to build a model with a certain degree of robustness, which improves the robustness of the trained network by adding an adversarial sample detection network for cooperative training.
We conduct some experiments to test the effectiveness of this design based on Cifar10 dataset, and the results indicate that it has some degree of positive effect on the robustness of the model.
arXiv Detail & Related papers (2022-04-25T12:30:35Z) - Simultaneous Training of Partially Masked Neural Networks [67.19481956584465]
We show that it is possible to train neural networks in such a way that a predefined 'core' subnetwork can be split-off from the trained full network with remarkable good performance.
We show that training a Transformer with a low-rank core gives a low-rank model with superior performance than when training the low-rank model alone.
arXiv Detail & Related papers (2021-06-16T15:57:51Z) - Multiple Run Ensemble Learning withLow-Dimensional Knowledge Graph
Embeddings [4.317340121054659]
We propose a simple but effective performance boosting strategy for knowledge graph embedding (KGE) models.
We repeat the training of a model 6 times in parallel with an embedding size of 200 and then combine the 6 separate models for testing.
We show that our approach enables different models to better cope with their issues on modeling various graph patterns.
arXiv Detail & Related papers (2021-04-11T12:26:50Z) - EfficientNetV2: Smaller Models and Faster Training [91.77432224225221]
This paper introduces EfficientNetV2, a new family of convolutional networks that have faster training speed and better parameter efficiency than previous models.
We use a combination of training-aware neural architecture search and scaling, to jointly optimize training speed and parameter efficiency.
Our experiments show that EfficientNetV2 models train much faster than state-of-the-art models while being up to 6.8x smaller.
arXiv Detail & Related papers (2021-04-01T07:08:36Z) - Dynamic Model Pruning with Feedback [64.019079257231]
We propose a novel model compression method that generates a sparse trained model without additional overhead.
We evaluate our method on CIFAR-10 and ImageNet, and show that the obtained sparse models can reach the state-of-the-art performance of dense models.
arXiv Detail & Related papers (2020-06-12T15:07:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.