Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
- URL: http://arxiv.org/abs/2404.11209v1
- Date: Wed, 17 Apr 2024 09:45:43 GMT
- Title: Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM
- Authors: Hongzhao Li, Hongyu Wang, Xia Sun, Hua He, Jun Feng,
- Abstract summary: We introduce a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM)
First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements.
We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM.
- Score: 5.766695041882696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.
Related papers
- SGSeg: Enabling Text-free Inference in Language-guided Segmentation of Chest X-rays via Self-guidance [10.075820470715374]
We propose a self-guided segmentation framework (SGSeg) that leverages language guidance for training (multi-modal) while enabling text-free inference (uni-modal)
We exploit the critical location information of both pulmonary and pathological structures depicted in the text reports and introduce a novel localization-enhanced report generation (LERG) module to generate clinical reports for self-guidance.
Our LERG integrates an object detector and a location-based attention aggregator, weakly-supervised by a location-aware pseudo-label extraction module.
arXiv Detail & Related papers (2024-09-07T08:16:00Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Structural Entities Extraction and Patient Indications Incorporation for Chest X-ray Report Generation [10.46031380503486]
We introduce a novel method, textbfStructural textbfEntities extraction and patient indications textbfIncorporation (SEI) for chest X-ray report generation.
We employ a structural entities extraction (SEE) approach to eliminate presentation-style vocabulary in reports.
We propose a cross-modal fusion network to integrate information from X-ray images, similar historical cases, and patient-specific indications.
arXiv Detail & Related papers (2024-05-23T01:29:47Z) - Self-supervised vision-langage alignment of deep learning representations for bone X-rays analysis [53.809054774037214]
This paper proposes leveraging vision-language pretraining on bone X-rays paired with French reports.
It is the first study to integrate French reports to shape the embedding space devoted to bone X-Rays representations.
arXiv Detail & Related papers (2024-05-14T19:53:20Z) - Grounded Knowledge-Enhanced Medical VLP for Chest X-Ray [12.239249676716247]
Medical vision-language pre-training has emerged as a promising approach for learning domain-general representations of medical image and text.
We propose a grounded knowledge-enhanced medical vision-language pre-training framework for chest X-ray.
Our results show the advantage of incorporating grounding mechanism to remove biases and improve the alignment between chest X-ray image and radiology report.
arXiv Detail & Related papers (2024-04-23T05:16:24Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text
Summaries [62.32403630651586]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.
Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.
AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
Conversational AI tools can generate and discuss clinically correct radiology reports for a given medical image.
RaDialog is the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog.
Our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions.
arXiv Detail & Related papers (2023-11-30T16:28:40Z) - IMITATE: Clinical Prior Guided Hierarchical Vision-Language Pre-training [15.04212780946932]
We propose a novel framework named IMITATE to learn the structure information from medical reports with hierarchical vision-language alignment.
The framework derives multi-level visual features from the chest X-ray (CXR) images and separately aligns these features with the descriptive and the conclusive text encoded in the hierarchical medical report.
arXiv Detail & Related papers (2023-10-11T10:12:43Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - FlexR: Few-shot Classification with Language Embeddings for Structured
Reporting of Chest X-rays [37.15474283789249]
We propose a method to predict clinical findings defined by sentences in structured reporting templates.
The approach involves training a contrastive language-image model using chest X-rays and related free-text radiological reports.
Results show that even with limited image-level annotations for training, the method can accomplish the structured reporting tasks of severity assessment of cardiomegaly and localizing pathologies in chest X-rays.
arXiv Detail & Related papers (2022-03-29T16:31:39Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.