MMCBE: Multi-modality Dataset for Crop Biomass Prediction and Beyond
- URL: http://arxiv.org/abs/2404.11256v3
- Date: Fri, 13 Sep 2024 00:35:30 GMT
- Title: MMCBE: Multi-modality Dataset for Crop Biomass Prediction and Beyond
- Authors: Xuesong Li, Zeeshan Hayder, Ali Zia, Connor Cassidy, Shiming Liu, Warwick Stiller, Eric Stone, Warren Conaty, Lars Petersson, Vivien Rolland,
- Abstract summary: Multi-modality dataset for crop biomass estimation (MMCBE)
This dataset comprises 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth.
We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering.
- Score: 11.976195465657236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Crop biomass, a critical indicator of plant growth, health, and productivity, is invaluable for crop breeding programs and agronomic research. However, the accurate and scalable quantification of crop biomass remains inaccessible due to limitations in existing measurement methods. One of the obstacles impeding the advancement of current crop biomass prediction methodologies is the scarcity of publicly available datasets. Addressing this gap, we introduce a new dataset in this domain, i.e. Multi-modality dataset for crop biomass estimation (MMCBE). Comprising 216 sets of multi-view drone images, coupled with LiDAR point clouds, and hand-labelled ground truth, MMCBE represents the first multi-modality one in the field. This dataset aims to establish benchmark methods for crop biomass quantification and foster the development of vision-based approaches. We have rigorously evaluated state-of-the-art crop biomass estimation methods using MMCBE and ventured into additional potential applications, such as 3D crop reconstruction from drone imagery and novel-view rendering. With this publication, we are making our comprehensive dataset available to the broader community.
Related papers
- NeFF-BioNet: Crop Biomass Prediction from Point Cloud to Drone Imagery [11.976195465657236]
We present a biomass prediction network (BioNet) for adaptation across different data modalities, including point clouds and drone imagery.
Our BioNet, utilizing a sparse 3D convolutional neural network (CNN) and a transformer-based prediction module, processes point clouds and other 3D data representations to predict biomass.
To further extend BioNet for drone imagery, we integrate a neural feature field (NeFF) module, enabling 3D structure reconstruction and the transformation of 2D semantic features into the corresponding 3D surfaces.
arXiv Detail & Related papers (2024-10-30T04:53:11Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
This model is capable of simulating distinct growth stages of plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions.
Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture.
arXiv Detail & Related papers (2024-03-27T08:42:47Z) - Improving Biomedical Entity Linking with Retrieval-enhanced Learning [53.24726622142558]
$k$NN-BioEL provides a BioEL model with the ability to reference similar instances from the entire training corpus as clues for prediction.
We show that $k$NN-BioEL outperforms state-of-the-art baselines on several datasets.
arXiv Detail & Related papers (2023-12-15T14:04:23Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Hyperspectral and LiDAR data for the prediction via machine learning of
tree species, volume and biomass: a possible contribution for updating forest
management plans [0.3848364262836075]
This work intends to lay the foundations for identifying the prevailing forest types and the delineation of forest units in the Autonomous Province of Trento (PAT)
Data from LiDAR and hyperspectral surveys of 2014 made available by PAT were acquired and processed.
arXiv Detail & Related papers (2022-09-30T06:06:25Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - Semi-supervised dry herbage mass estimation using automatic data and
synthetic images [8.993785655588736]
Monitoring species-specific dry herbage biomass is an important aspect of pasture-based milk production systems.
Deep learning for computer vision is a powerful tool in this context.
We propose in this paper to study low supervision approaches to dry biomass estimation using computer vision.
arXiv Detail & Related papers (2021-10-26T14:10:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Inferring Microbial Biomass Yield and Cell Weight using Probabilistic
Macrochemical Modeling [0.0]
Growth rates and biomass yields are key descriptors used in microbiology studies to understand how microbial species respond to changes in the environment.
estimating biomass from cell counts, as needed to assess yields, relies on an assumed cell weight.
Noise and discrepancies on these assumptions can lead to significant changes in conclusions regarding the microbes' response.
This article proposes a methodology to address these challenges using probabilistic macrochemical models of microbial growth.
arXiv Detail & Related papers (2020-10-06T14:23:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.