Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era
- URL: http://arxiv.org/abs/2404.11457v2
- Date: Wed, 21 Aug 2024 17:23:03 GMT
- Title: Bias and Unfairness in Information Retrieval Systems: New Challenges in the LLM Era
- Authors: Sunhao Dai, Chen Xu, Shicheng Xu, Liang Pang, Zhenhua Dong, Jun Xu,
- Abstract summary: Information retrieval systems, such as search engines and recommender systems, have undergone a significant paradigm shift.
With the rapid advancements of large language models (LLMs), information retrieval systems, such as search engines and recommender systems, have undergone a significant paradigm shift.
- Score: 31.199796752545478
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the rapid advancements of large language models (LLMs), information retrieval (IR) systems, such as search engines and recommender systems, have undergone a significant paradigm shift. This evolution, while heralding new opportunities, introduces emerging challenges, particularly in terms of biases and unfairness, which may threaten the information ecosystem. In this paper, we present a comprehensive survey of existing works on emerging and pressing bias and unfairness issues in IR systems when the integration of LLMs. We first unify bias and unfairness issues as distribution mismatch problems, providing a groundwork for categorizing various mitigation strategies through distribution alignment. Subsequently, we systematically delve into the specific bias and unfairness issues arising from three critical stages of LLMs integration into IR systems: data collection, model development, and result evaluation. In doing so, we meticulously review and analyze recent literature, focusing on the definitions, characteristics, and corresponding mitigation strategies associated with these issues. Finally, we identify and highlight some open problems and challenges for future work, aiming to inspire researchers and stakeholders in the IR field and beyond to better understand and mitigate bias and unfairness issues of IR in this LLM era. We also consistently maintain a GitHub repository for the relevant papers and resources in this rising direction at https://github.com/KID-22/LLM-IR-Bias-Fairness-Survey.
Related papers
- Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
This paper explores the potential impact of cognitive biases on large language models (LLMs) based news recommender systems.
We discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
arXiv Detail & Related papers (2024-10-03T18:42:07Z) - A Comprehensive Survey of Bias in LLMs: Current Landscape and Future Directions [0.0]
Large Language Models (LLMs) have revolutionized various applications in natural language processing (NLP) by providing unprecedented text generation, translation, and comprehension capabilities.
Their widespread deployment has brought to light significant concerns regarding biases embedded within these models.
This paper presents a comprehensive survey of biases in LLMs, aiming to provide an extensive review of the types, sources, impacts, and mitigation strategies related to these biases.
arXiv Detail & Related papers (2024-09-24T19:50:38Z) - Unboxing Occupational Bias: Grounded Debiasing of LLMs with U.S. Labor Data [9.90951705988724]
Large Language Models (LLM) are prone to inheriting and amplifying societal biases.
LLM bias can have far-reaching consequences, leading to unfair practices and exacerbating social inequalities.
arXiv Detail & Related papers (2024-08-20T23:54:26Z) - Fairness and Bias Mitigation in Computer Vision: A Survey [61.01658257223365]
Computer vision systems are increasingly being deployed in high-stakes real-world applications.
There is a dire need to ensure that they do not propagate or amplify any discriminatory tendencies in historical or human-curated data.
This paper presents a comprehensive survey on fairness that summarizes and sheds light on ongoing trends and successes in the context of computer vision.
arXiv Detail & Related papers (2024-08-05T13:44:22Z) - Fairness in Large Language Models in Three Hours [2.443957114877221]
This tutorial provides a systematic overview of recent advances in the literature concerning large language models.
The concept of fairness in LLMs is then explored, summarizing the strategies for evaluating bias and the algorithms designed to promote fairness.
arXiv Detail & Related papers (2024-08-02T03:44:14Z) - Towards detecting unanticipated bias in Large Language Models [1.4589372436314496]
Large Language Models (LLMs) have exhibited fairness issues similar to those in previous machine learning systems.
This research focuses on analyzing and quantifying these biases in training data and their impact on the decisions of these models.
arXiv Detail & Related papers (2024-04-03T11:25:20Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - Information Retrieval Meets Large Language Models: A Strategic Report
from Chinese IR Community [180.28262433004113]
Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference.
LLMs and humans form a new technical paradigm that is more powerful for information seeking.
To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023.
arXiv Detail & Related papers (2023-07-19T05:23:43Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.