A Large-scale Fine-grained Analysis of Packages in Open-Source Software Ecosystems
- URL: http://arxiv.org/abs/2404.11467v1
- Date: Wed, 17 Apr 2024 15:16:01 GMT
- Title: A Large-scale Fine-grained Analysis of Packages in Open-Source Software Ecosystems
- Authors: Xiaoyan Zhou, Feiran Liang, Zhaojie Xie, Yang Lan, Wenjia Niu, Jiqiang Liu, Haining Wang, Qiang Li,
- Abstract summary: Malicious packages have less metadata content and utilize fewer static and dynamic functions than legitimate ones.
One dimension in fine-grained information (FGI) has sufficient distinguishable capability to detect malicious packages.
- Score: 13.610690659041417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Package managers such as NPM, Maven, and PyPI play a pivotal role in open-source software (OSS) ecosystems, streamlining the distribution and management of various freely available packages. The fine-grained details within software packages can unveil potential risks within existing OSS ecosystems, offering valuable insights for detecting malicious packages. In this study, we undertake a large-scale empirical analysis focusing on fine-grained information (FGI): the metadata, static, and dynamic functions. Specifically, we investigate the FGI usage across a diverse set of 50,000+ legitimate and 1,000+ malicious packages. Based on this diverse data collection, we conducted a comparative analysis between legitimate and malicious packages. Our findings reveal that (1) malicious packages have less metadata content and utilize fewer static and dynamic functions than legitimate ones; (2) malicious packages demonstrate a higher tendency to invoke HTTP/URL functions as opposed to other application services, such as FTP or SMTP; (3) FGI serves as a distinguishable indicator between legitimate and malicious packages; and (4) one dimension in FGI has sufficient distinguishable capability to detect malicious packages, and combining all dimensions in FGI cannot significantly improve overall performance.
Related papers
- The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - How to Understand Whole Software Repository? [64.19431011897515]
An excellent understanding of the whole repository will be the critical path to Automatic Software Engineering (ASE)
We develop a novel method named RepoUnderstander by guiding agents to comprehensively understand the whole repositories.
To better utilize the repository-level knowledge, we guide the agents to summarize, analyze, and plan.
arXiv Detail & Related papers (2024-06-03T15:20:06Z) - OSS Malicious Package Analysis in the Wild [17.028240712650486]
This paper builds and curates the largest dataset of 23,425 malicious packages from scattered online sources.
We then propose a knowledge graph to represent the OSS malware corpus and conduct malicious package analysis in the wild.
arXiv Detail & Related papers (2024-04-07T15:25:13Z) - DONAPI: Malicious NPM Packages Detector using Behavior Sequence Knowledge Mapping [28.852274185512236]
npm is the most extensive package manager, hosting more than 2 million third-party open-source packages.
In this paper, we synchronize a local package cache containing more than 3.4 million packages in near real-time to give us access to more package code details.
We propose the DONAPI, an automatic malicious npm packages detector that combines static and dynamic analysis.
arXiv Detail & Related papers (2024-03-13T08:38:21Z) - Malicious Package Detection using Metadata Information [0.272760415353533]
We introduce a metadata-based malicious package detection model, MeMPtec.
MeMPtec extracts a set of features from package metadata information.
Our experiments indicate a significant reduction in both false positives and false negatives.
arXiv Detail & Related papers (2024-02-12T06:54:57Z) - On the Feasibility of Cross-Language Detection of Malicious Packages in
npm and PyPI [6.935278888313423]
Malicious users started to spread malware by publishing open-source packages containing malicious code.
Recent works apply machine learning techniques to detect malicious packages in the npm ecosystem.
We present a novel approach that involves a set of language-independent features and the training of models capable of detecting malicious packages in npm and PyPI.
arXiv Detail & Related papers (2023-10-14T12:32:51Z) - Malicious Package Detection in NPM and PyPI using a Single Model of
Malicious Behavior Sequence [7.991922551051611]
Package registries NPM and PyPI have been flooded with malicious packages.
The effectiveness of existing malicious NPM and PyPI package detection approaches is hindered by two challenges.
We propose and implement Cerebro to detect malicious packages in NPM and PyPI.
arXiv Detail & Related papers (2023-09-06T00:58:59Z) - FAT Forensics: A Python Toolbox for Implementing and Deploying Fairness,
Accountability and Transparency Algorithms in Predictive Systems [69.24490096929709]
We developed an open source Python package called FAT Forensics.
It can inspect important fairness, accountability and transparency aspects of predictive algorithms.
Our toolbox can evaluate all elements of a predictive pipeline.
arXiv Detail & Related papers (2022-09-08T13:25:02Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApy is a python software package for analysing and characterising high-dimensional data.
It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering and for comparing different distance metrics.
arXiv Detail & Related papers (2022-05-04T08:41:59Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.