Predicting Long-horizon Futures by Conditioning on Geometry and Time
- URL: http://arxiv.org/abs/2404.11554v1
- Date: Wed, 17 Apr 2024 16:56:31 GMT
- Title: Predicting Long-horizon Futures by Conditioning on Geometry and Time
- Authors: Tarasha Khurana, Deva Ramanan,
- Abstract summary: We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
- Score: 49.86180975196375
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Our work explores the task of generating future sensor observations conditioned on the past. We are motivated by `predictive coding' concepts from neuroscience as well as robotic applications such as self-driving vehicles. Predictive video modeling is challenging because the future may be multi-modal and learning at scale remains computationally expensive for video processing. To address both challenges, our key insight is to leverage the large-scale pretraining of image diffusion models which can handle multi-modality. We repurpose image models for video prediction by conditioning on new frame timestamps. Such models can be trained with videos of both static and dynamic scenes. To allow them to be trained with modestly-sized datasets, we introduce invariances by factoring out illumination and texture by forcing the model to predict (pseudo) depth, readily obtained for in-the-wild videos via off-the-shelf monocular depth networks. In fact, we show that simply modifying networks to predict grayscale pixels already improves the accuracy of video prediction. Given the extra controllability with timestamp conditioning, we propose sampling schedules that work better than the traditional autoregressive and hierarchical sampling strategies. Motivated by probabilistic metrics from the object forecasting literature, we create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes and a large vocabulary of objects. Our experiments illustrate the effectiveness of learning to condition on timestamps, and show the importance of predicting the future with invariant modalities.
Related papers
- AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
Text-guided video prediction (TVP) involves predicting the motion of future frames from the initial frame according to an instruction.
Previous TVP methods make significant breakthroughs by adapting Stable Diffusion for this task.
We introduce the Multi-Modal Large Language Model (MLLM) to predict future video states based on initial frames and text instructions.
arXiv Detail & Related papers (2024-06-10T17:02:08Z) - STDiff: Spatio-temporal Diffusion for Continuous Stochastic Video
Prediction [20.701792842768747]
We propose a novel video prediction model, which has infinite-dimensional latent variables over the temporal domain.
Our model is able to achieve temporal continuous prediction, i.e., predicting in an unsupervised way, with an arbitrarily high frame rate.
arXiv Detail & Related papers (2023-12-11T16:12:43Z) - HARP: Autoregressive Latent Video Prediction with High-Fidelity Image
Generator [90.74663948713615]
We train an autoregressive latent video prediction model capable of predicting high-fidelity future frames.
We produce high-resolution (256x256) videos with minimal modification to existing models.
arXiv Detail & Related papers (2022-09-15T08:41:57Z) - Video Prediction at Multiple Scales with Hierarchical Recurrent Networks [24.536256844130996]
We propose a novel video prediction model able to forecast future possible outcomes of different levels of granularity simultaneously.
By combining spatial and temporal downsampling, MSPred is able to efficiently predict abstract representations over long time horizons.
In our experiments, we demonstrate that our proposed model accurately predicts future video frames as well as other representations on various scenarios.
arXiv Detail & Related papers (2022-03-17T13:08:28Z) - Learning Multi-Object Dynamics with Compositional Neural Radiance Fields [63.424469458529906]
We present a method to learn compositional predictive models from image observations based on implicit object encoders, Neural Radiance Fields (NeRFs), and graph neural networks.
NeRFs have become a popular choice for representing scenes due to their strong 3D prior.
For planning, we utilize RRTs in the learned latent space, where we can exploit our model and the implicit object encoder to make sampling the latent space informative and more efficient.
arXiv Detail & Related papers (2022-02-24T01:31:29Z) - FitVid: Overfitting in Pixel-Level Video Prediction [117.59339756506142]
We introduce a new architecture, named FitVid, which is capable of severe overfitting on the common benchmarks.
FitVid outperforms the current state-of-the-art models across four different video prediction benchmarks on four different metrics.
arXiv Detail & Related papers (2021-06-24T17:20:21Z) - Greedy Hierarchical Variational Autoencoders for Large-Scale Video
Prediction [79.23730812282093]
We introduce Greedy Hierarchical Variational Autoencoders (GHVAEs), a method that learns high-fidelity video predictions by greedily training each level of a hierarchical autoencoder.
GHVAEs provide 17-55% gains in prediction performance on four video datasets, a 35-40% higher success rate on real robot tasks, and can improve performance monotonically by simply adding more modules.
arXiv Detail & Related papers (2021-03-06T18:58:56Z) - Clockwork Variational Autoencoders [33.17951971728784]
We introduce the Clockwork VAE (CW-VAE), a video prediction model that leverages a hierarchy of latent sequences.
We demonstrate the benefits of both hierarchical latents and temporal abstraction on 4 diverse video prediction datasets.
We propose a Minecraft benchmark for long-term video prediction.
arXiv Detail & Related papers (2021-02-18T18:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.