Simple Image Signal Processing using Global Context Guidance
- URL: http://arxiv.org/abs/2404.11569v2
- Date: Wed, 25 Sep 2024 17:53:48 GMT
- Title: Simple Image Signal Processing using Global Context Guidance
- Authors: Omar Elezabi, Marcos V. Conde, Radu Timofte,
- Abstract summary: Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks.
We propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images.
Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
- Score: 56.41827271721955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In modern smartphone cameras, the Image Signal Processor (ISP) is the core element that converts the RAW readings from the sensor into perceptually pleasant RGB images for the end users. The ISP is typically proprietary and handcrafted and consists of several blocks such as white balance, color correction, and tone mapping. Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks. However, most learned ISPs are trained using patches (small regions) due to computational limitations. Such methods lack global context, which limits their efficacy on full-resolution images and harms their ability to capture global properties such as color constancy or illumination. First, we propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images. Second, we propose an efficient and simple neural ISP that utilizes our proposed module. Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
Related papers
- Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs [53.68932498994655]
This paper introduces a novel method for unpaired learning of raw-to-raw translation across diverse cameras.
It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras.
Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques.
arXiv Detail & Related papers (2024-04-16T16:17:48Z) - MetaISP -- Exploiting Global Scene Structure for Accurate Multi-Device
Color Rendition [17.986236212580565]
We present MetaISP, a model designed to learn how to translate between the color and local contrast characteristics of different devices.
We achieve this result by employing a lightweight deep learning technique that conditions its output appearance based on the device of interest.
arXiv Detail & Related papers (2024-01-06T14:06:29Z) - Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain [27.1716081216131]
Current methods ignore the difference between cell phone RAW images and DSLR camera RGB images.
We present a novel Neural ISP framework, named FourierISP.
This approach breaks the image down into style and structure within the frequency domain, allowing for independent optimization.
arXiv Detail & Related papers (2024-01-04T09:18:31Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
We tackle blind image super-resolution in the RAW domain.
We design a realistic degradation pipeline tailored specifically for training models with raw sensor data.
Our BSRAW models trained with our pipeline can upscale real-scene RAW images and improve their quality.
arXiv Detail & Related papers (2023-12-24T14:17:28Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
Conventional cameras capture image irradiance on a sensor and convert it to RGB images using an image signal processor (ISP)
One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing.
We propose a novel $rho$-Vision framework to perform high-level semantic understanding and low-level compression using RAW images.
arXiv Detail & Related papers (2022-12-15T12:54:21Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Del-Net: A Single-Stage Network for Mobile Camera ISP [14.168130234198467]
Traditional image signal processing (ISP) pipeline in a smartphone camera consists of several image processing steps performed sequentially to reconstruct a high quality sRGB image from the raw sensor data.
Deep learning methods using convolutional neural networks (CNN) have become popular in solving many image-related tasks such as image denoising, contrast enhancement, super resolution, deblurring, etc.
In this paper we propose DelNet - a single end-to-end deep learning model - to learn the entire ISP pipeline within reasonable complexity for smartphone deployment.
arXiv Detail & Related papers (2021-08-03T16:51:11Z) - Replacing Mobile Camera ISP with a Single Deep Learning Model [171.49776472948957]
PyNET is a novel pyramidal CNN architecture designed for fine-grained image restoration.
The model is trained to convert RAW Bayer data obtained directly from mobile camera sensor into photos captured with a professional high-end DSLR camera.
arXiv Detail & Related papers (2020-02-13T14:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.