TempBEV: Improving Learned BEV Encoders with Combined Image and BEV Space Temporal Aggregation
- URL: http://arxiv.org/abs/2404.11803v1
- Date: Wed, 17 Apr 2024 23:49:00 GMT
- Title: TempBEV: Improving Learned BEV Encoders with Combined Image and BEV Space Temporal Aggregation
- Authors: Thomas Monninger, Vandana Dokkadi, Md Zafar Anwar, Steffen Staab,
- Abstract summary: We develop a novel temporal BEV encoder, TempBEV, which integrates aggregated temporal information from both latent spaces.
Empirical evaluation on the NuScenes dataset shows a significant improvement by TempBEV over the baseline for 3D object detection and BEV segmentation.
- Score: 9.723276622743473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving requires an accurate representation of the environment. A strategy toward high accuracy is to fuse data from several sensors. Learned Bird's-Eye View (BEV) encoders can achieve this by mapping data from individual sensors into one joint latent space. For cost-efficient camera-only systems, this provides an effective mechanism to fuse data from multiple cameras with different views. Accuracy can further be improved by aggregating sensor information over time. This is especially important in monocular camera systems to account for the lack of explicit depth and velocity measurements. Thereby, the effectiveness of developed BEV encoders crucially depends on the operators used to aggregate temporal information and on the used latent representation spaces. We analyze BEV encoders proposed in the literature and compare their effectiveness, quantifying the effects of aggregation operators and latent representations. While most existing approaches aggregate temporal information either in image or in BEV latent space, our analyses and performance comparisons suggest that these latent representations exhibit complementary strengths. Therefore, we develop a novel temporal BEV encoder, TempBEV, which integrates aggregated temporal information from both latent spaces. We consider subsequent image frames as stereo through time and leverage methods from optical flow estimation for temporal stereo encoding. Empirical evaluation on the NuScenes dataset shows a significant improvement by TempBEV over the baseline for 3D object detection and BEV segmentation. The ablation uncovers a strong synergy of joint temporal aggregation in the image and BEV latent space. These results indicate the overall effectiveness of our approach and make a strong case for aggregating temporal information in both image and BEV latent spaces.
Related papers
- BEVPose: Unveiling Scene Semantics through Pose-Guided Multi-Modal BEV Alignment [8.098296280937518]
We present BEVPose, a framework that integrates BEV representations from camera and lidar data, using sensor pose as a guiding supervisory signal.
By leveraging pose information, we align and fuse multi-modal sensory inputs, facilitating the learning of latent BEV embeddings that capture both geometric and semantic aspects of the environment.
arXiv Detail & Related papers (2024-10-28T12:40:27Z) - OE-BevSeg: An Object Informed and Environment Aware Multimodal Framework for Bird's-eye-view Vehicle Semantic Segmentation [57.2213693781672]
Bird's-eye-view (BEV) semantic segmentation is becoming crucial in autonomous driving systems.
We propose OE-BevSeg, an end-to-end multimodal framework that enhances BEV segmentation performance.
Our approach achieves state-of-the-art results by a large margin on the nuScenes dataset for vehicle segmentation.
arXiv Detail & Related papers (2024-07-18T03:48:22Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Diffusion-Based Particle-DETR for BEV Perception [94.88305708174796]
Bird-Eye-View (BEV) is one of the most widely-used scene representations for visual perception in Autonomous Vehicles (AVs)
Recent diffusion-based methods offer a promising approach to uncertainty modeling for visual perception but fail to effectively detect small objects in the large coverage of the BEV.
Here, we address this problem by combining the diffusion paradigm with current state-of-the-art 3D object detectors in BEV.
arXiv Detail & Related papers (2023-12-18T09:52:14Z) - Instance-aware Multi-Camera 3D Object Detection with Structural Priors
Mining and Self-Boosting Learning [93.71280187657831]
Camera-based bird-eye-view (BEV) perception paradigm has made significant progress in the autonomous driving field.
We propose IA-BEV, which integrates image-plane instance awareness into the depth estimation process within a BEV-based detector.
arXiv Detail & Related papers (2023-12-13T09:24:42Z) - BroadBEV: Collaborative LiDAR-camera Fusion for Broad-sighted Bird's Eye
View Map Construction [31.664613321775516]
We propose a broad BEV fusion (BroadBEV) that addresses the problems with a spatial synchronization approach of cross-modality.
Our strategy aims to enhance camera BEV estimation for a broad-sighted perception while simultaneously improving the completion of LiDAR's sparsity in the entire BEV space.
arXiv Detail & Related papers (2023-09-20T07:55:57Z) - Leveraging BEV Representation for 360-degree Visual Place Recognition [14.497501941931759]
This paper investigates the advantages of using Bird's Eye View representation in 360-degree visual place recognition (VPR)
We propose a novel network architecture that utilizes the BEV representation in feature extraction, feature aggregation, and vision-LiDAR fusion.
The proposed BEV-based method is evaluated in ablation and comparative studies on two datasets.
arXiv Detail & Related papers (2023-05-23T08:29:42Z) - Temporal Enhanced Training of Multi-view 3D Object Detector via
Historical Object Prediction [28.800204844558518]
We propose a new paradigm, named Historical Object Prediction (HoP) for multi-view 3D detection.
We generate a pseudo Bird's-Eye View (BEV) feature of timestamp t-k from its adjacent frames and utilize this feature to predict the object set at timestamp t-k.
As a plug-and-play approach, HoP can be easily incorporated into state-of-the-art BEV detection frameworks.
arXiv Detail & Related papers (2023-04-03T13:35:29Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
We present BEVerse, a unified framework for 3D perception and prediction based on multi-camera systems.
We show that the multi-task BEVerse outperforms single-task methods on 3D object detection, semantic map construction, and motion prediction.
arXiv Detail & Related papers (2022-05-19T17:55:35Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEV is a unified framework that jointly performs 3D object detection and map segmentation.
M$2$BEV infers both tasks with a unified model and improves efficiency.
arXiv Detail & Related papers (2022-04-11T13:43:25Z) - BEVFormer: Learning Bird's-Eye-View Representation from Multi-Camera
Images via Spatiotemporal Transformers [39.253627257740085]
3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems.
We present a new framework termed BEVFormer, which learns unified BEV representations with transformers to support multiple autonomous driving perception tasks.
We show that BEVFormer remarkably improves the accuracy of velocity estimation and recall of objects under low visibility conditions.
arXiv Detail & Related papers (2022-03-31T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.