TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation
- URL: http://arxiv.org/abs/2404.11824v4
- Date: Thu, 12 Dec 2024 08:59:22 GMT
- Title: TextCenGen: Attention-Guided Text-Centric Background Adaptation for Text-to-Image Generation
- Authors: Tianyi Liang, Jiangqi Liu, Yifei Huang, Shiqi Jiang, Sicheng Song, Jianshen Shi, Changbo Wang, Chenhui Li,
- Abstract summary: Text-to-image (T2I) generation has witnessed a shift from adapting text to fixed backgrounds to creating images around text.
Our proposed approach, TextCenGen, introduces a dynamic adaptation of the blank region for text-friendly image generation.
Our method employs force-directed attention guidance in T2I models to generate images that strategically reserve whitespace for pre-defined text areas.
- Score: 21.501953406405583
- License:
- Abstract: Recent advancements in Text-to-image (T2I) generation have witnessed a shift from adapting text to fixed backgrounds to creating images around text. Traditional approaches are often limited to generate layouts within static images for effective text placement. Our proposed approach, TextCenGen, introduces a dynamic adaptation of the blank region for text-friendly image generation, emphasizing text-centric design and visual harmony generation. Our method employs force-directed attention guidance in T2I models to generate images that strategically reserve whitespace for pre-defined text areas, even for text or icons at the golden ratio. Observing how cross-attention maps affect object placement, we detect and repel conflicting objects using a force-directed graph approach, combined with a Spatial Excluding Cross-Attention Constraint for smooth attention in whitespace areas. As a novel task in graphic design, experiments indicate that TextCenGen outperforms existing methods with more harmonious compositions. Furthermore, our method significantly enhances T2I model outcomes on our specially collected prompt datasets, catering to varied text positions. These results demonstrate the efficacy of TextCenGen in creating more harmonious and integrated text-image compositions.
Related papers
- Beyond Flat Text: Dual Self-inherited Guidance for Visual Text Generation [17.552733309504486]
In real-world images, slanted or curved texts, especially those on cans, banners, or badges, appear as frequently as flat texts due to artistic design or layout constraints.
We introduce a new training-free framework, STGen, which accurately generates visual texts in challenging scenarios.
arXiv Detail & Related papers (2025-01-10T11:44:59Z) - SceneVTG++: Controllable Multilingual Visual Text Generation in the Wild [55.619708995575785]
The text in natural scene images needs to meet the following four key criteria.
The generated text can facilitate to the training of natural scene OCR (Optical Character Recognition) tasks.
The generated images have superior utility in OCR tasks like text detection and text recognition.
arXiv Detail & Related papers (2025-01-06T12:09:08Z) - First Creating Backgrounds Then Rendering Texts: A New Paradigm for Visual Text Blending [5.3798706094384725]
We propose a new visual text blending paradigm including both creating backgrounds and rendering texts.
Specifically, a background generator is developed to produce high-fidelity and text-free natural images.
We also explore several downstream applications based on our method, including scene text dataset synthesis for boosting scene text detectors.
arXiv Detail & Related papers (2024-10-14T05:23:43Z) - Visual Text Generation in the Wild [67.37458807253064]
We propose a visual text generator (termed SceneVTG) which can produce high-quality text images in the wild.
The proposed SceneVTG significantly outperforms traditional rendering-based methods and recent diffusion-based methods in terms of fidelity and reasonability.
The generated images provide superior utility for tasks involving text detection and text recognition.
arXiv Detail & Related papers (2024-07-19T09:08:20Z) - Typographic Text Generation with Off-the-Shelf Diffusion Model [7.542892664684078]
This paper proposes a typographic text generation system to add and modify text on typographic designs.
The proposed system is a novel combination of two off-the-shelf methods for diffusion models, ControlNet and Blended Latent Diffusion.
arXiv Detail & Related papers (2024-02-22T06:15:51Z) - Enhancing Scene Text Detectors with Realistic Text Image Synthesis Using
Diffusion Models [63.99110667987318]
We present DiffText, a pipeline that seamlessly blends foreground text with the background's intrinsic features.
With fewer text instances, our produced text images consistently surpass other synthetic data in aiding text detectors.
arXiv Detail & Related papers (2023-11-28T06:51:28Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [12.057465578064345]
The goal of Text-to-Image Person Retrieval (TIPR) is to retrieve specific person images according to the given textual descriptions.
We propose a novel TIPR framework to build fine-grained interactions and alignment between person images and the corresponding texts.
arXiv Detail & Related papers (2023-07-18T08:23:46Z) - SpaText: Spatio-Textual Representation for Controllable Image Generation [61.89548017729586]
SpaText is a new method for text-to-image generation using open-vocabulary scene control.
In addition to a global text prompt that describes the entire scene, the user provides a segmentation map.
We show its effectiveness on two state-of-the-art diffusion models: pixel-based and latent-conditional-based.
arXiv Detail & Related papers (2022-11-25T18:59:10Z) - Paired Cross-Modal Data Augmentation for Fine-Grained Image-to-Text
Retrieval [142.047662926209]
We propose a novel framework for paired data augmentation by uncovering the hidden semantic information of StyleGAN2 model.
We generate augmented text through random token replacement, then pass the augmented text into the latent space alignment module.
We evaluate the efficacy of our augmented data approach on two public cross-modal retrieval datasets.
arXiv Detail & Related papers (2022-07-29T01:21:54Z) - Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors [58.71128866226768]
Recent text-to-image generation methods have incrementally improved the generated image fidelity and text relevancy.
We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene.
Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of 512x512 pixels.
arXiv Detail & Related papers (2022-03-24T15:44:50Z) - Text to Image Generation with Semantic-Spatial Aware GAN [41.73685713621705]
A text to image generation (T2I) model aims to generate photo-realistic images which are semantically consistent with the text descriptions.
We propose a novel framework Semantic-Spatial Aware GAN, which is trained in an end-to-end fashion so that the text encoder can exploit better text information.
arXiv Detail & Related papers (2021-04-01T15:48:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.