Actor-Critic Reinforcement Learning with Phased Actor
- URL: http://arxiv.org/abs/2404.11834v1
- Date: Thu, 18 Apr 2024 01:27:31 GMT
- Title: Actor-Critic Reinforcement Learning with Phased Actor
- Authors: Ruofan Wu, Junmin Zhong, Jennie Si,
- Abstract summary: We propose a novel phased actor in actor-critic (PAAC) method to improve policy gradient estimation.
PAAC accounts for both $Q$ value and TD error in its actor update.
Results show that PAAC leads to significant performance improvement measured by total cost, learning variance, robustness, learning speed and success rate.
- Score: 10.577516871906816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Policy gradient methods in actor-critic reinforcement learning (RL) have become perhaps the most promising approaches to solving continuous optimal control problems. However, the trial-and-error nature of RL and the inherent randomness associated with solution approximations cause variations in the learned optimal values and policies. This has significantly hindered their successful deployment in real life applications where control responses need to meet dynamic performance criteria deterministically. Here we propose a novel phased actor in actor-critic (PAAC) method, aiming at improving policy gradient estimation and thus the quality of the control policy. Specifically, PAAC accounts for both $Q$ value and TD error in its actor update. We prove qualitative properties of PAAC for learning convergence of the value and policy, solution optimality, and stability of system dynamics. Additionally, we show variance reduction in policy gradient estimation. PAAC performance is systematically and quantitatively evaluated in this study using DeepMind Control Suite (DMC). Results show that PAAC leads to significant performance improvement measured by total cost, learning variance, robustness, learning speed and success rate. As PAAC can be piggybacked onto general policy gradient learning frameworks, we select well-known methods such as direct heuristic dynamic programming (dHDP), deep deterministic policy gradient (DDPG) and their variants to demonstrate the effectiveness of PAAC. Consequently we provide a unified view on these related policy gradient algorithms.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Policy Gradient for Rectangular Robust Markov Decision Processes [62.397882389472564]
We introduce robust policy gradient (RPG), a policy-based method that efficiently solves rectangular robust Markov decision processes (MDPs)
Our resulting RPG can be estimated from data with the same time complexity as its non-robust equivalent.
arXiv Detail & Related papers (2023-01-31T12:40:50Z) - Sigmoidally Preconditioned Off-policy Learning:a new exploration method
for reinforcement learning [14.991913317341417]
We focus on an off-policy Actor-Critic architecture, and propose a novel method, called Preconditioned Proximal Policy Optimization (P3O)
P3O can control the high variance of importance sampling by applying a preconditioner to the Conservative Policy Iteration (CPI) objective.
Results show that our P3O maximizes the CPI objective better than PPO during the training process.
arXiv Detail & Related papers (2022-05-20T09:38:04Z) - Bag of Tricks for Natural Policy Gradient Reinforcement Learning [87.54231228860495]
We have implemented and compared strategies that impact performance in natural policy gradient reinforcement learning.
The proposed collection of strategies for performance optimization can improve results by 86% to 181% across the MuJuCo control benchmark.
arXiv Detail & Related papers (2022-01-22T17:44:19Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
Off-policy Reinforcement Learning holds the promise of better data efficiency.
Current off-policy policy gradient methods either suffer from high bias or high variance, delivering often unreliable estimates.
We propose a nonparametric Bellman equation, which can be solved in closed form.
arXiv Detail & Related papers (2020-10-27T13:40:06Z) - Zeroth-order Deterministic Policy Gradient [116.87117204825105]
We introduce Zeroth-order Deterministic Policy Gradient (ZDPG)
ZDPG approximates policy-reward gradients via two-point evaluations of the $Q$function.
New finite sample complexity bounds for ZDPG improve upon existing results by up to two orders of magnitude.
arXiv Detail & Related papers (2020-06-12T16:52:29Z) - Kalman meets Bellman: Improving Policy Evaluation through Value Tracking [59.691919635037216]
Policy evaluation is a key process in Reinforcement Learning (RL)
We devise an optimization method, called Kalman Optimization for Value Approximation (KOVA)
KOVA minimizes a regularized objective function that concerns both parameter and noisy return uncertainties.
arXiv Detail & Related papers (2020-02-17T13:30:43Z) - Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for
Addressing Value Estimation Errors [13.534873779043478]
We present a distributional soft actor-critic (DSAC) algorithm to improve the policy performance by mitigating Q-value overestimations.
We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.
arXiv Detail & Related papers (2020-01-09T02:27:18Z) - A Nonparametric Off-Policy Policy Gradient [32.35604597324448]
Reinforcement learning (RL) algorithms still suffer from high sample complexity despite outstanding recent successes.
We build on the general sample efficiency of off-policy algorithms.
We show that our approach has better sample efficiency than state-of-the-art policy gradient methods.
arXiv Detail & Related papers (2020-01-08T10:13:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.