Group-On: Boosting One-Shot Segmentation with Supportive Query
- URL: http://arxiv.org/abs/2404.11871v1
- Date: Thu, 18 Apr 2024 03:10:04 GMT
- Title: Group-On: Boosting One-Shot Segmentation with Supportive Query
- Authors: Hanjing Zhou, Mingze Yin, JinTai Chen, Danny Chen, Jian Wu,
- Abstract summary: One-shot semantic segmentation aims to segment query images given only ONE annotated support image of the same class.
We propose a novel approach for ONE-shot semantic segmentation, called Group-On, which packs multiple query images in batches.
- Score: 8.623405412540247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-shot semantic segmentation aims to segment query images given only ONE annotated support image of the same class. This task is challenging because target objects in the support and query images can be largely different in appearance and pose (i.e., intra-class variation). Prior works suggested that incorporating more annotated support images in few-shot settings boosts performances but increases costs due to additional manual labeling. In this paper, we propose a novel approach for ONE-shot semantic segmentation, called Group-On, which packs multiple query images in batches for the benefit of mutual knowledge support within the same category. Specifically, after coarse segmentation masks of the batch of queries are predicted, query-mask pairs act as pseudo support data to enhance mask predictions mutually, under the guidance of a simple Group-On Voting module. Comprehensive experiments on three standard benchmarks show that, in the ONE-shot setting, our Group-On approach significantly outperforms previous works by considerable margins. For example, on the COCO-20i dataset, we increase mIoU scores by 8.21% and 7.46% on ASNet and HSNet baselines, respectively. With only one support image, Group-On can be even competitive with the counterparts using 5 annotated support images.
Related papers
- MatchSeg: Towards Better Segmentation via Reference Image Matching [5.55078598520531]
Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images.
Inspired by this paradigm, we introduce MatchSeg, a novel framework that enhances medical image segmentation through strategic reference image matching.
arXiv Detail & Related papers (2024-03-23T18:04:58Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Dense Affinity Matching for Few-Shot Segmentation [83.65203917246745]
Few-Shot (FSS) aims to segment the novel class images with a few samples.
We propose a dense affinity matching framework to exploit the support-query interaction.
We show that our framework performs very competitively under different settings with only 0.68M parameters.
arXiv Detail & Related papers (2023-07-17T12:27:15Z) - Reflection Invariance Learning for Few-shot Semantic Segmentation [53.20466630330429]
Few-shot semantic segmentation (FSS) aims to segment objects of unseen classes in query images with only a few annotated support images.
This paper proposes a fresh few-shot segmentation framework to mine the reflection invariance in a multi-view matching manner.
Experiments on both PASCAL-$5textiti$ and COCO-$20textiti$ datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-01T15:14:58Z) - Dense Cross-Query-and-Support Attention Weighted Mask Aggregation for
Few-Shot Segmentation [25.605580031284052]
Few-shot Semantic Dense (FSS) has attracted great attention.
The goal of FSS is to segment target objects in a query image given only a few annotated support images of the target class.
We propose pixel-wise Cross-query-and-support Attention weighted Mask Aggregation (AMADC), where both foreground and background support information are fully exploited.
arXiv Detail & Related papers (2022-07-18T12:12:42Z) - Few-shot Segmentation with Optimal Transport Matching and Message Flow [50.9853556696858]
It is essential for few-shot semantic segmentation to fully utilize the support information.
We propose a Correspondence Matching Network (CMNet) with an Optimal Transport Matching module.
Experiments on PASCAL VOC 2012, MS COCO, and FSS-1000 datasets show that our network achieves new state-of-the-art few-shot segmentation performance.
arXiv Detail & Related papers (2021-08-19T06:26:11Z) - Few-Shot Segmentation with Global and Local Contrastive Learning [51.677179037590356]
We propose a prior extractor to learn the query information from the unlabeled images with our proposed global-local contrastive learning.
We generate the prior region maps for query images, which locate the objects, as guidance to perform cross interaction with support features.
Without bells and whistles, the proposed approach achieves new state-of-the-art performance for the few-shot segmentation task.
arXiv Detail & Related papers (2021-08-11T15:52:22Z) - Few-Shot Segmentation via Cycle-Consistent Transformer [74.49307213431952]
We focus on utilizing pixel-wise relationships between support and target images to facilitate the few-shot semantic segmentation task.
We propose using a novel cycle-consistent attention mechanism to filter out possible harmful support features.
Our proposed CyCTR leads to remarkable improvement compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-06-04T07:57:48Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
We propose a self-guided learning approach for few-shot segmentation.
By making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors.
By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images.
arXiv Detail & Related papers (2021-03-30T07:36:41Z) - CRNet: Cross-Reference Networks for Few-Shot Segmentation [59.85183776573642]
Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images.
With a cross-reference mechanism, our network can better find the co-occurrent objects in the two images.
Experiments on the PASCAL VOC 2012 dataset show that our network achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-03-24T04:55:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.