Skeleton: A New Framework for Accelerating Language Models via Task Neuron Localized Prompt Tuning
- URL: http://arxiv.org/abs/2404.11916v2
- Date: Thu, 17 Oct 2024 09:01:27 GMT
- Title: Skeleton: A New Framework for Accelerating Language Models via Task Neuron Localized Prompt Tuning
- Authors: Nakyeong Yang, Jiwon Moon, Junseok Kim, Yunah Jang, Kyomin Jung,
- Abstract summary: We propose a novel prompt tuning framework called Skeleton to efficiently utilize a language model in terms of memory and time complexity.
Our method significantly enhances inference efficiency (at most x 1.73 speed up) for various widely used benchmarks.
- Score: 15.695487920048816
- License:
- Abstract: Prompt tuning methods have shown comparable performance to general training methods as parameter-efficient fine-tuning (PEFT) methods in various natural language understanding tasks. However, existing prompt tuning methods still utilize the entire model architecture even when solving a specific task, which prevents them from accelerating inference speed during the application procedure. In this paper, we propose a novel prompt tuning framework called Skeleton to efficiently utilize a language model in terms of memory and time complexity for solving various tasks, retaining only task-relevant neurons by using an explainability method. From our framework, we can efficiently solve various tasks by using only task-relevant neurons and prepending adequate task-specific prompt tokens with only a single language model. Experiments reveal that our method significantly enhances inference efficiency (at most x 1.73 speed up) for various widely used benchmarks, showing comparable performance to the prompt tuning method. Moreover, our method is applicable across various transformer-based architectures, confirming its practicality and scalability.
Related papers
- Parameter-Efficient Fine-Tuning of Large Language Models using Semantic Knowledge Tuning [0.08795040582681389]
Large Language Models (LLMs) are gaining significant popularity in recent years for specialized tasks using prompts.
We propose a novel method called Semantic Knowledge Tuning (SK-Tuning) for prompt and prefix tuning that employs meaningful words instead of random tokens.
Our experimental results show that SK-Tuning exhibits faster training times, fewer parameters, and superior performance on tasks such as text classification and understanding.
arXiv Detail & Related papers (2024-10-11T07:55:09Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
We propose Test-time Prompt Editing using Reinforcement learning (TEMPERA)
In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge.
Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods.
arXiv Detail & Related papers (2022-11-21T22:38:20Z) - Resource-Efficient Transfer Learning From Speech Foundation Model Using
Hierarchical Feature Fusion [44.056153052137674]
We propose a novel hierarchical feature fusion method for resource-efficient transfer learning from speech foundation models.
Experimental results show that the proposed method can achieve better performance on speech recognition task than existing algorithms.
arXiv Detail & Related papers (2022-11-04T19:03:45Z) - Prompt-Matched Semantic Segmentation [96.99924127527002]
The objective of this work is to explore how to effectively adapt pre-trained foundation models to various downstream tasks of image semantic segmentation.
We propose a novel Inter-Stage Prompt-Matched Framework, which maintains the original structure of the foundation model while generating visual prompts adaptively for task-oriented tuning.
A lightweight module termed Semantic-aware Prompt Matcher is then introduced to hierarchically interpolate between two stages to learn reasonable prompts for each specific task.
arXiv Detail & Related papers (2022-08-22T09:12:53Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuning is a new, efficient NLP transfer learning paradigm that adds a task-specific prompt in each input instance during the model training stage.
We propose a conditional prompt generation method to generate prompts for each input instance.
arXiv Detail & Related papers (2022-04-09T15:45:27Z) - Making Pre-trained Language Models End-to-end Few-shot Learners with
Contrastive Prompt Tuning [41.15017636192417]
We present CP-Tuning, the first end-to-end Contrastive Prompt Tuning framework for fine-tuning Language Models.
It is integrated with the task-invariant continuous prompt encoding technique with fully trainable prompt parameters.
Experiments over a variety of language understanding tasks used in IR systems and different PLMs show that CP-Tuning outperforms state-of-the-art methods.
arXiv Detail & Related papers (2022-04-01T02:24:24Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
We report the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM)
Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models.
arXiv Detail & Related papers (2022-03-31T03:26:55Z) - Towards a Unified View of Parameter-Efficient Transfer Learning [108.94786930869473]
Fine-tuning large pre-trained language models on downstream tasks has become the de-facto learning paradigm in NLP.
Recent work has proposed a variety of parameter-efficient transfer learning methods that only fine-tune a small number of (extra) parameters to attain strong performance.
We break down the design of state-of-the-art parameter-efficient transfer learning methods and present a unified framework that establishes connections between them.
arXiv Detail & Related papers (2021-10-08T20:22:26Z) - XtremeDistilTransformers: Task Transfer for Task-agnostic Distillation [80.18830380517753]
We develop a new task-agnostic distillation framework XtremeDistilTransformers.
We study the transferability of several source tasks, augmentation resources and model architecture for distillation.
arXiv Detail & Related papers (2021-06-08T17:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.