Sketch-guided Image Inpainting with Partial Discrete Diffusion Process
- URL: http://arxiv.org/abs/2404.11949v1
- Date: Thu, 18 Apr 2024 07:07:38 GMT
- Title: Sketch-guided Image Inpainting with Partial Discrete Diffusion Process
- Authors: Nakul Sharma, Aditay Tripathi, Anirban Chakraborty, Anand Mishra,
- Abstract summary: We introduce a novel partial discrete diffusion process (PDDP) for sketch-guided inpainting.
PDDP corrupts the masked regions of the image and reconstructs these masked regions conditioned on hand-drawn sketches.
The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process.
- Score: 5.005162730122933
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this work, we study the task of sketch-guided image inpainting. Unlike the well-explored natural language-guided image inpainting, which excels in capturing semantic details, the relatively less-studied sketch-guided inpainting offers greater user control in specifying the object's shape and pose to be inpainted. As one of the early solutions to this task, we introduce a novel partial discrete diffusion process (PDDP). The forward pass of the PDDP corrupts the masked regions of the image and the backward pass reconstructs these masked regions conditioned on hand-drawn sketches using our proposed sketch-guided bi-directional transformer. The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process. This strategy effectively addresses the domain gap between sketches and natural images, thereby, enhancing the quality of inpainting results. In the absence of a large-scale dataset specific to this task, we synthesize a dataset from the MS-COCO to train and extensively evaluate our proposed framework against various competent approaches in the literature. The qualitative and quantitative results and user studies establish that the proposed method inpaints realistic objects that fit the context in terms of the visual appearance of the provided sketch. To aid further research, we have made our code publicly available at https://github.com/vl2g/Sketch-Inpainting .
Related papers
- BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed
Dual-Branch Diffusion [61.90969199199739]
BrushNet is a novel plug-and-play dual-branch model engineered to embed pixel-level masked image features into any pre-trained DM.
BrushNet's superior performance over existing models across seven key metrics, including image quality, mask region preservation, and textual coherence.
arXiv Detail & Related papers (2024-03-11T17:59:31Z) - Segmentation-Based Parametric Painting [22.967620358813214]
We introduce a novel image-to-painting method that facilitates the creation of large-scale, high-fidelity paintings with human-like quality and stylistic variation.
We introduce a segmentation-based painting process and a dynamic attention map approach inspired by human painting strategies.
Our optimized batch processing and patch-based loss framework enable efficient handling of large canvases.
arXiv Detail & Related papers (2023-11-24T04:15:10Z) - Stroke-based Neural Painting and Stylization with Dynamically Predicted
Painting Region [66.75826549444909]
Stroke-based rendering aims to recreate an image with a set of strokes.
We propose Compositional Neural Painter, which predicts the painting region based on the current canvas.
We extend our method to stroke-based style transfer with a novel differentiable distance transform loss.
arXiv Detail & Related papers (2023-09-07T06:27:39Z) - Towards Interactive Image Inpainting via Sketch Refinement [13.34066589008464]
We propose a two-stage image inpainting method termed SketchRefiner.
In the first stage, we propose using a cross-correlation loss function to robustly calibrate and refine the user-provided sketches.
In the second stage, we learn to extract informative features from the abstracted sketches in the feature space and modulate the inpainting process.
arXiv Detail & Related papers (2023-06-01T07:15:54Z) - PaintSeg: Training-free Segmentation via Painting [50.17936803209125]
PaintSeg is a new unsupervised method for segmenting objects without any training.
Inpainting and outpainting are alternated, with the former masking the foreground and filling in the background, and the latter masking the background while recovering the missing part of the foreground object.
Our experimental results demonstrate that PaintSeg outperforms existing approaches in coarse mask-prompt, box-prompt, and point-prompt segmentation tasks.
arXiv Detail & Related papers (2023-05-30T20:43:42Z) - DiffFaceSketch: High-Fidelity Face Image Synthesis with Sketch-Guided
Latent Diffusion Model [8.1818090854822]
We introduce a Sketch-Guided Latent Diffusion Model (SGLDM), an LDM-based network architect trained on a paired sketch-face dataset.
SGLDM can synthesize high-quality face images with different expressions, facial accessories, and hairstyles from various sketches with different abstraction levels.
arXiv Detail & Related papers (2023-02-14T08:51:47Z) - SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [95.45728042499836]
We propose a new paradigm of sketch-based image manipulation: mask-free local image manipulation.
Our model automatically predicts the target modification region and encodes it into a structure style vector.
A generator then synthesizes the new image content based on the style vector and sketch.
arXiv Detail & Related papers (2021-11-30T02:42:31Z) - Bridging the Visual Gap: Wide-Range Image Blending [16.464837892640812]
We introduce an effective deep-learning model to realize wide-range image blending.
We experimentally demonstrate that our proposed method is able to produce visually appealing results.
arXiv Detail & Related papers (2021-03-28T15:07:45Z) - Semantic Layout Manipulation with High-Resolution Sparse Attention [106.59650698907953]
We tackle the problem of semantic image layout manipulation, which aims to manipulate an input image by editing its semantic label map.
A core problem of this task is how to transfer visual details from the input images to the new semantic layout while making the resulting image visually realistic.
We propose a high-resolution sparse attention module that effectively transfers visual details to new layouts at a resolution up to 512x512.
arXiv Detail & Related papers (2020-12-14T06:50:43Z) - Painting Outside as Inside: Edge Guided Image Outpainting via
Bidirectional Rearrangement with Progressive Step Learning [18.38266676724225]
We propose a novel image outpainting method using bidirectional boundary region rearrangement.
The proposed method is compared with other state-of-the-art outpainting and inpainting methods both qualitatively and quantitatively.
The experimental results demonstrate that our method outperforms other methods and generates new images with 360degpanoramic characteristics.
arXiv Detail & Related papers (2020-10-05T06:53:55Z) - Sketch-Guided Scenery Image Outpainting [83.6612152173028]
We propose an encoder-decoder based network to conduct sketch-guided outpainting.
We apply a holistic alignment module to make the synthesized part be similar to the real one from the global view.
Second, we reversely produce the sketches from the synthesized part and encourage them be consistent with the ground-truth ones.
arXiv Detail & Related papers (2020-06-17T11:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.