TIMIT Speaker Profiling: A Comparison of Multi-task learning and Single-task learning Approaches
- URL: http://arxiv.org/abs/2404.12077v1
- Date: Thu, 18 Apr 2024 10:59:54 GMT
- Title: TIMIT Speaker Profiling: A Comparison of Multi-task learning and Single-task learning Approaches
- Authors: Rong Wang, Kun Sun,
- Abstract summary: This study employs deep learning techniques to explore four speaker profiling tasks on the TIMIT dataset.
It highlights the potential and challenges of multi-task learning versus single-task models.
- Score: 27.152245569974678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study employs deep learning techniques to explore four speaker profiling tasks on the TIMIT dataset, namely gender classification, accent classification, age estimation, and speaker identification, highlighting the potential and challenges of multi-task learning versus single-task models. The motivation for this research is twofold: firstly, to empirically assess the advantages and drawbacks of multi-task learning over single-task models in the context of speaker profiling; secondly, to emphasize the undiminished significance of skillful feature engineering for speaker recognition tasks. The findings reveal challenges in accent classification, and multi-task learning is found advantageous for tasks of similar complexity. Non-sequential features are favored for speaker recognition, but sequential ones can serve as starting points for complex models. The study underscores the necessity of meticulous experimentation and parameter tuning for deep learning models.
Related papers
- Pre-training Multi-task Contrastive Learning Models for Scientific
Literature Understanding [52.723297744257536]
Pre-trained language models (LMs) have shown effectiveness in scientific literature understanding tasks.
We propose a multi-task contrastive learning framework, SciMult, to facilitate common knowledge sharing across different literature understanding tasks.
arXiv Detail & Related papers (2023-05-23T16:47:22Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
We compare sequential fine-tuning with a model for multi-task learning in the context of boosting performance on two tasks.
Our results show that while sequential multi-task learning can be tuned to be good at the first of two target tasks, it performs less well on the second and additionally struggles with overfitting.
arXiv Detail & Related papers (2022-10-31T13:26:08Z) - Improving Multi-task Generalization Ability for Neural Text Matching via
Prompt Learning [54.66399120084227]
Recent state-of-the-art neural text matching models (PLMs) are hard to generalize to different tasks.
We adopt a specialization-generalization training strategy and refer to it as Match-Prompt.
In specialization stage, descriptions of different matching tasks are mapped to only a few prompt tokens.
In generalization stage, text matching model explores the essential matching signals by being trained on diverse multiple matching tasks.
arXiv Detail & Related papers (2022-04-06T11:01:08Z) - Look\&Listen: Multi-Modal Correlation Learning for Active Speaker
Detection and Speech Enhancement [18.488808141923492]
ADENet is proposed to achieve target speaker detection and speech enhancement with joint learning of audio-visual modeling.
Cross-modal relationship between auditory and visual stream is a promising solution for the challenge of audio-visual multi-task learning.
arXiv Detail & Related papers (2022-03-04T09:53:19Z) - Combining Modular Skills in Multitask Learning [149.8001096811708]
A modular design encourages neural models to disentangle and recombine different facets of knowledge to generalise more systematically to new tasks.
In this work, we assume each task is associated with a subset of latent discrete skills from a (potentially small) inventory.
We find that the modular design of a network significantly increases sample efficiency in reinforcement learning and few-shot generalisation in supervised learning.
arXiv Detail & Related papers (2022-02-28T16:07:19Z) - On the relationship between disentanglement and multi-task learning [62.997667081978825]
We take a closer look at the relationship between disentanglement and multi-task learning based on hard parameter sharing.
We show that disentanglement appears naturally during the process of multi-task neural network training.
arXiv Detail & Related papers (2021-10-07T14:35:34Z) - Re-framing Incremental Deep Language Models for Dialogue Processing with
Multi-task Learning [14.239355474794142]
We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model.
We show that these tasks provide positive inductive biases to each other with the optimal contribution of each one relying on the severity of the noise from the task.
arXiv Detail & Related papers (2020-11-13T04:31:51Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.