An Adaptive Metaheuristic Framework for Changing Environments
- URL: http://arxiv.org/abs/2404.12185v1
- Date: Thu, 18 Apr 2024 13:47:53 GMT
- Title: An Adaptive Metaheuristic Framework for Changing Environments
- Authors: Bestoun S. Ahmed,
- Abstract summary: This paper introduces an Adaptive Metaheuristic Framework (AMF) designed for dynamic environments.
AMF combines a dynamic representation of problems, a real-time sensing system, and adaptive techniques to navigate continuously changing optimization environments.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapidly changing landscapes of modern optimization problems require algorithms that can be adapted in real-time. This paper introduces an Adaptive Metaheuristic Framework (AMF) designed for dynamic environments. It is capable of intelligently adapting to changes in the problem parameters. The AMF combines a dynamic representation of problems, a real-time sensing system, and adaptive techniques to navigate continuously changing optimization environments. Through a simulated dynamic optimization problem, the AMF's capability is demonstrated to detect environmental changes and proactively adjust its search strategy. This framework utilizes a differential evolution algorithm that is improved with an adaptation module that adjusts solutions in response to detected changes. The capability of the AMF to adjust is tested through a series of iterations, demonstrating its resilience and robustness in sustaining solution quality despite the problem's development. The effectiveness of AMF is demonstrated through a series of simulations on a dynamic optimization problem. Robustness and agility characterize the algorithm's performance, as evidenced by the presented fitness evolution and solution path visualizations. The findings show that AMF is a practical solution to dynamic optimization and a major step forward in the creation of algorithms that can handle the unpredictability of real-world problems.
Related papers
- Modified CMA-ES Algorithm for Multi-Modal Optimization: Incorporating Niching Strategies and Dynamic Adaptation Mechanism [0.03495246564946555]
This study modifies the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm for multi-modal optimization problems.
The enhancements focus on addressing the challenges of multiple global minima, improving the algorithm's ability to maintain diversity and explore complex fitness landscapes.
We incorporate niching strategies and dynamic adaptation mechanisms to refine the algorithm's performance in identifying and optimizing multiple global optima.
arXiv Detail & Related papers (2024-07-01T03:41:39Z) - Solving Expensive Optimization Problems in Dynamic Environments with Meta-learning [32.41025515064283]
We propose a simple yet effective meta-learning-based optimization framework for solving expensive dynamic optimization problems.
This framework is flexible, allowing any off-the-shelf continuously differentiable surrogate model to be used in a plug-in manner.
Experiments demonstrate the effectiveness of the proposed algorithm framework compared to several state-of-the-art algorithms.
arXiv Detail & Related papers (2023-10-19T07:42:51Z) - AbCD: A Component-wise Adjustable Framework for Dynamic Optimization
Problems [49.1574468325115]
Dynamic Optimization Problems (DOPs) are characterized by changes in the fitness landscape that can occur at any time and are common in real world applications.
We develop a component-oriented framework for DOPs called Adjustable Components for Dynamic Problems (AbCD)
Our results highlight existing problems in the DOP field that need to be addressed in the future development of algorithms and components.
arXiv Detail & Related papers (2023-10-09T08:11:31Z) - Vector Autoregressive Evolution for Dynamic Multi-Objective Optimisation [7.5104598146227]
Dynamic multi-objective optimisation (DMO) handles optimisation problems with multiple objectives in varying environments.
This paper proposes vector autoregressive evolution (VARE) consisting of vector autoregression ( VAR) and environment-aware hypermutation to address environmental changes in DMO.
arXiv Detail & Related papers (2023-05-22T06:24:25Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL)
The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization.
We show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem.
arXiv Detail & Related papers (2022-11-01T22:08:34Z) - Reproducibility and Baseline Reporting for Dynamic Multi-objective
Benchmark Problems [4.859986264602551]
This paper focuses on the simulation experiments for parameters of DMOPs.
A baseline schema for dynamic algorithm evaluation is introduced.
We can establish the minimum capability required of purpose-built dynamic algorithms to be useful.
arXiv Detail & Related papers (2022-04-08T15:50:17Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
We present a modified Cross-Entropy Method (CEM) that uses a masked auto-regressive neural network for modeling uniform distributions over the solution space.
Our algorithm is able to express complicated solution spaces, thus allowing it to track a variety of different solution regions.
arXiv Detail & Related papers (2020-02-17T20:21:20Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
Resource allocation and transceivers in wireless networks are usually designed by solving optimization problems.
In this article, we introduce unsupervised and reinforced-unsupervised learning frameworks for solving both variable and functional optimization problems.
arXiv Detail & Related papers (2020-01-03T11:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.