Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning
- URL: http://arxiv.org/abs/2404.12450v1
- Date: Thu, 18 Apr 2024 18:25:00 GMT
- Title: Enhancing AI Diagnostics: Autonomous Lesion Masking via Semi-Supervised Deep Learning
- Authors: Ting-Ruen Wei, Michele Hell, Dang Bich Thuy Le, Aren Vierra, Ran Pang, Mahesh Patel, Young Kang, Yuling Yan,
- Abstract summary: This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging.
Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations.
This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset.
- Score: 1.4053129774629076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an unsupervised domain adaptation method aimed at autonomously generating image masks outlining regions of interest (ROIs) for differentiating breast lesions in breast ultrasound (US) imaging. Our semi-supervised learning approach utilizes a primitive model trained on a small public breast US dataset with true annotations. This model is then iteratively refined for the domain adaptation task, generating pseudo-masks for our private, unannotated breast US dataset. The dataset, twice the size of the public one, exhibits considerable variability in image acquisition perspectives and demographic representation, posing a domain-shift challenge. Unlike typical domain adversarial training, we employ downstream classification outcomes as a benchmark to guide the updating of pseudo-masks in subsequent iterations. We found the classification precision to be highly correlated with the completeness of the generated ROIs, which promotes the explainability of the deep learning classification model. Preliminary findings demonstrate the efficacy and reliability of this approach in streamlining the ROI annotation process, thereby enhancing the classification and localization of breast lesions for more precise and interpretable diagnoses.
Related papers
- Mitigating annotation shift in cancer classification using single image generative models [1.1864334278373239]
This study simulates, analyses and mitigates annotation shifts in cancer classification in the breast mammography domain.
We propose a training data augmentation approach based on single-image generative models for the affected class.
Our study offers key insights into annotation shift in deep learning breast cancer classification and explores the potential of single-image generative models to overcome domain shift challenges.
arXiv Detail & Related papers (2024-05-30T07:02:50Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - In-context Cross-Density Adaptation on Noisy Mammogram Abnormalities
Detection [0.4433315630787158]
This paper investigates the impact of breast density distribution on the generalization performance of deep-learning models on mammography images.
We propose a robust augmentation framework to bridge the domain gap between the source and target inside a dataset.
arXiv Detail & Related papers (2023-06-12T06:46:42Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - Joint localization and classification of breast tumors on ultrasound
images using a novel auxiliary attention-based framework [7.6620616780444974]
We propose a novel joint localization and classification model based on the attention mechanism and disentangled semi-supervised learning strategy.
The proposed modularized framework allows flexible network replacement to be generalized for various applications.
arXiv Detail & Related papers (2022-10-11T20:14:13Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - Consistent Posterior Distributions under Vessel-Mixing: A Regularization
for Cross-Domain Retinal Artery/Vein Classification [30.30848090813239]
We propose a vessel-mixing based consistency regularization framework, for cross-domain learning in retinal A/V classification.
Our method achieves the state-of-the-art cross-domain performance, which is also close to the upper bound obtained by fully supervised learning on target domain.
arXiv Detail & Related papers (2021-03-16T14:18:35Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.