A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks
- URL: http://arxiv.org/abs/2404.12602v1
- Date: Fri, 19 Apr 2024 03:12:17 GMT
- Title: A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks
- Authors: Minzhe Huang, Changwei Nie, Weihong Zhong,
- Abstract summary: Face Anti-Spoofing (FAS) has played a crucial role in preserving the security of face recognition technology.
With the rise of counterfeit face generation techniques, the challenge posed by digitally edited faces to face anti-spoofing is escalating.
We propose a visualization method that intuitively reflects the training outcomes of models by visualizing the prediction results on datasets.
- Score: 1.1118946307353794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Face Anti-Spoofing (FAS) has played a crucial role in preserving the security of face recognition technology. With the rise of counterfeit face generation techniques, the challenge posed by digitally edited faces to face anti-spoofing is escalating. Existing FAS technologies primarily focus on intercepting physically forged faces and lack a robust solution for cross-domain FAS challenges. Moreover, determining an appropriate threshold to achieve optimal deployment results remains an issue for intra-domain FAS. To address these issues, we propose a visualization method that intuitively reflects the training outcomes of models by visualizing the prediction results on datasets. Additionally, we demonstrate that employing data augmentation techniques, such as downsampling and Gaussian blur, can effectively enhance performance on cross-domain tasks. Building upon our data visualization approach, we also introduce a methodology for setting threshold values based on the distribution of the training dataset. Ultimately, our methods secured us second place in both the Unified Physical-Digital Face Attack Detection competition and the Snapshot Spectral Imaging Face Anti-spoofing contest. The training code is available at https://github.com/SeaRecluse/CVPRW2024.
Related papers
- Towards Data-Centric Face Anti-Spoofing: Improving Cross-domain Generalization via Physics-based Data Synthesis [64.46312434121455]
Face Anti-Spoofing (FAS) research is challenged by the cross-domain problem, where there is a domain gap between the training and testing data.
We propose task-specific FAS data augmentation (FAS-Aug), which increases data diversity by synthesizing data of artifacts.
We also propose Spoofing Attack Risk Equalization (SARE) to prevent models from relying on certain types of artifacts and improve the generalization performance.
arXiv Detail & Related papers (2024-09-04T01:45:18Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
We propose a novel image augmentation technique to enhance the model's understanding of facial structures.
We employ a Siamese architecture-based training mechanism with a Deep Canonical Correlation Analysis (DCCA)-based loss.
Our approach outperforms multiple state-of-the-art approaches across various benchmark datasets.
arXiv Detail & Related papers (2024-02-23T01:34:00Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Robust face anti-spoofing framework with Convolutional Vision
Transformer [1.7596501992526474]
This study proposes a convolutional vision transformer-based framework that achieves robust performance for various unseen domain data.
It also shows the highest average rank in sub-protocols of cross-dataset setting over the other nine benchmark models for domain generalization.
arXiv Detail & Related papers (2023-07-24T00:03:09Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Face Anti-Spoofing Via Disentangled Representation Learning [90.90512800361742]
Face anti-spoofing is crucial to security of face recognition systems.
We propose a novel perspective of face anti-spoofing that disentangles the liveness features and content features from images.
arXiv Detail & Related papers (2020-08-19T03:54:23Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.