Large Language Model Supply Chain: A Research Agenda
- URL: http://arxiv.org/abs/2404.12736v3
- Date: Tue, 26 Nov 2024 13:35:05 GMT
- Title: Large Language Model Supply Chain: A Research Agenda
- Authors: Shenao Wang, Yanjie Zhao, Xinyi Hou, Haoyu Wang,
- Abstract summary: Large language models (LLMs) have revolutionized artificial intelligence, introducing unprecedented capabilities in natural language processing and multimodal content generation.
This paper provides the first comprehensive research agenda of the LLM supply chain, offering a structured approach to identify critical challenges and opportunities.
- Score: 5.1875389249043415
- License:
- Abstract: The rapid advancement of large language models (LLMs) has revolutionized artificial intelligence, introducing unprecedented capabilities in natural language processing and multimodal content generation. However, the increasing complexity and scale of these models have given rise to a multifaceted supply chain that presents unique challenges across infrastructure, foundation models, and downstream applications. This paper provides the first comprehensive research agenda of the LLM supply chain, offering a structured approach to identify critical challenges and opportunities through the dual lenses of software engineering (SE) and security & privacy (S\&P). We begin by establishing a clear definition of the LLM supply chain, encompassing its components and dependencies. We then analyze each layer of the supply chain, presenting a vision for robust and secure LLM development, reviewing the current state of practices and technologies, and identifying key challenges and research opportunities. This work aims to bridge the existing research gap in systematically understanding the multifaceted issues within the LLM supply chain, offering valuable insights to guide future efforts in this rapidly evolving domain.
Related papers
- Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.
Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.
We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - Supply Chain Network Extraction and Entity Classification Leveraging Large Language Models [5.205252810216621]
We develop a supply chain graph for the civil engineering sector using large language models (LLMs)
We fine-tune an LLM to classify entities within the supply chain graph, providing detailed insights into their roles and relationships.
Our contributions include the development of a supply chain graph for the civil engineering sector, as well as a fine-tuned LLM model that enhances entity classification and understanding of supply chain networks.
arXiv Detail & Related papers (2024-10-16T21:24:13Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - Enhancing Supply Chain Visibility with Knowledge Graphs and Large Language Models [49.898152180805454]
This paper presents a novel framework leveraging Knowledge Graphs (KGs) and Large Language Models (LLMs) to enhance supply chain visibility.
Our zero-shot, LLM-driven approach automates the extraction of supply chain information from diverse public sources.
With high accuracy in NER and RE tasks, it provides an effective tool for understanding complex, multi-tiered supply networks.
arXiv Detail & Related papers (2024-08-05T17:11:29Z) - A Comprehensive Review of Multimodal Large Language Models: Performance and Challenges Across Different Tasks [74.52259252807191]
Multimodal Large Language Models (MLLMs) address the complexities of real-world applications far beyond the capabilities of single-modality systems.
This paper systematically sorts out the applications of MLLM in multimodal tasks such as natural language, vision, and audio.
arXiv Detail & Related papers (2024-08-02T15:14:53Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio.
We summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods.
We dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction.
arXiv Detail & Related papers (2024-05-29T17:59:20Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Building Guardrails for Large Language Models [19.96292920696796]
Guardrails, which filter the inputs or outputs of LLMs, have emerged as a core safeguarding technology.
This position paper takes a deep look at current open-source solutions (Llama Guard, Nvidia NeMo, Guardrails AI) and discusses the challenges and the road towards building more complete solutions.
arXiv Detail & Related papers (2024-02-02T16:35:00Z) - A Survey of Resource-efficient LLM and Multimodal Foundation Models [22.23967603206849]
Large foundation models, including large language models (LLMs), vision transformers (ViTs), diffusion, and multimodal models, are revolutionizing the entire machine learning lifecycle.
However, the substantial advancements in versatility and performance these models offer come at a significant cost in terms of hardware resources.
This survey delves into the critical importance of such research, examining both algorithmic and systemic aspects.
arXiv Detail & Related papers (2024-01-16T03:35:26Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.