Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation
- URL: http://arxiv.org/abs/2404.12766v2
- Date: Sat, 8 Jun 2024 16:36:17 GMT
- Title: Continual Learning on a Diet: Learning from Sparsely Labeled Streams Under Constrained Computation
- Authors: Wenxuan Zhang, Youssef Mohamed, Bernard Ghanem, Philip H. S. Torr, Adel Bibi, Mohamed Elhoseiny,
- Abstract summary: We study a realistic Continual Learning setting where learning algorithms are granted a restricted computational budget per time step while training.
We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rates.
Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget, and various other ablations.
- Score: 123.4883806344334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose and study a realistic Continual Learning (CL) setting where learning algorithms are granted a restricted computational budget per time step while training. We apply this setting to large-scale semi-supervised Continual Learning scenarios with sparse label rates. Previous proficient CL methods perform very poorly in this challenging setting. Overfitting to the sparse labeled data and insufficient computational budget are the two main culprits for such a poor performance. Our new setting encourages learning methods to effectively and efficiently utilize the unlabeled data during training. To that end, we propose a simple but highly effective baseline, DietCL, which utilizes both unlabeled and labeled data jointly. DietCL meticulously allocates computational budget for both types of data. We validate our baseline, at scale, on several datasets, e.g., CLOC, ImageNet10K, and CGLM, under constraint budget setups. DietCL outperforms, by a large margin, all existing supervised CL algorithms as well as more recent continual semi-supervised methods. Our extensive analysis and ablations demonstrate that DietCL is stable under a full spectrum of label sparsity, computational budget, and various other ablations.
Related papers
- Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
We focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories.
We propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning.
arXiv Detail & Related papers (2023-12-27T04:40:12Z) - Density Distribution-based Learning Framework for Addressing Online
Continual Learning Challenges [4.715630709185073]
We introduce a density distribution-based learning framework for online Continual Learning.
Our framework achieves superior average accuracy and time-space efficiency.
Our method outperforms popular CL approaches by a significant margin.
arXiv Detail & Related papers (2023-11-22T09:21:28Z) - Online Continual Learning Without the Storage Constraint [67.66235695269839]
We contribute a simple algorithm, which updates a kNN classifier continually along with a fixed, pretrained feature extractor.
It can adapt to rapidly changing streams, has zero stability gap, operates within tiny computational budgets, has low storage requirements by only storing features.
It can outperform existing methods by over 20% in accuracy on two large-scale online continual learning datasets.
arXiv Detail & Related papers (2023-05-16T08:03:07Z) - Computationally Budgeted Continual Learning: What Does Matter? [128.0827987414154]
Continual Learning (CL) aims to sequentially train models on streams of incoming data that vary in distribution by preserving previous knowledge while adapting to new data.
Current CL literature focuses on restricted access to previously seen data, while imposing no constraints on the computational budget for training.
We revisit this problem with a large-scale benchmark and analyze the performance of traditional CL approaches in a compute-constrained setting.
arXiv Detail & Related papers (2023-03-20T14:50:27Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Weakly Supervised Continual Learning [17.90483695137098]
This work explores Weakly Supervised Continual Learning (WSCL)
We show that not only our proposals exhibit higher flexibility when supervised information is scarce, but also that less than 25% labels can be enough to reach or even outperform SOTA methods trained under full supervision.
In doing so, we show that not only our proposals exhibit higher flexibility when supervised information is scarce, but also that less than 25% labels can be enough to reach or even outperform SOTA methods trained under full supervision.
arXiv Detail & Related papers (2021-08-14T14:38:20Z) - RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised
Learning [9.155410614399159]
We propose RETRIEVE, a coreset selection framework for efficient and robust semi-supervised learning.
We show that RETRIEVE achieves a speedup of around 3X in the traditional SSL setting and achieves a speedup of 5X compared to state-of-the-art (SOTA) robust SSL algorithms.
arXiv Detail & Related papers (2021-06-14T21:18:47Z) - Relieving the Plateau: Active Semi-Supervised Learning for a Better
Landscape [2.3046646540823916]
Semi-supervised learning (SSL) leverages unlabeled data that are more accessible than their labeled counterparts.
Active learning (AL) selects unlabeled instances to be annotated by a human-in-the-loop in hopes of better performance with less labeled data.
We propose convergence rate control (CRC), an AL algorithm that selects unlabeled data to improve the problem conditioning upon inclusion to the labeled set.
arXiv Detail & Related papers (2021-04-08T06:03:59Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.