A Guide to Feature Importance Methods for Scientific Inference
- URL: http://arxiv.org/abs/2404.12862v2
- Date: Thu, 29 Aug 2024 11:18:16 GMT
- Title: A Guide to Feature Importance Methods for Scientific Inference
- Authors: Fiona Katharina Ewald, Ludwig Bothmann, Marvin N. Wright, Bernd Bischl, Giuseppe Casalicchio, Gunnar König,
- Abstract summary: Feature importance (FI) methods provide useful insights into the data-generating process (DGP)
This paper serves as a comprehensive guide to help understand the different interpretations of global FI methods.
- Score: 10.31256905045161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While machine learning (ML) models are increasingly used due to their high predictive power, their use in understanding the data-generating process (DGP) is limited. Understanding the DGP requires insights into feature-target associations, which many ML models cannot directly provide due to their opaque internal mechanisms. Feature importance (FI) methods provide useful insights into the DGP under certain conditions. Since the results of different FI methods have different interpretations, selecting the correct FI method for a concrete use case is crucial and still requires expert knowledge. This paper serves as a comprehensive guide to help understand the different interpretations of global FI methods. Through an extensive review of FI methods and providing new proofs regarding their interpretation, we facilitate a thorough understanding of these methods and formulate concrete recommendations for scientific inference. We conclude by discussing options for FI uncertainty estimation and point to directions for future research aiming at full statistical inference from black-box ML models.
Related papers
- Faithful Explanations of Black-box NLP Models Using LLM-generated
Counterfactuals [67.64770842323966]
Causal explanations of predictions of NLP systems are essential to ensure safety and establish trust.
Existing methods often fall short of explaining model predictions effectively or efficiently.
We propose two approaches for counterfactual (CF) approximation.
arXiv Detail & Related papers (2023-10-01T07:31:04Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
Interpretable machine learning offers a solution by analyzing models holistically to derive interpretations.
Current IML research is focused on auditing ML models rather than leveraging them for scientific inference.
We present a framework for designing IML methods-termed 'property descriptors' that illuminate not just the model, but also the phenomenon it represents.
arXiv Detail & Related papers (2022-06-11T10:13:21Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
Explainable Artificial Intelligence (XAI) is an emerging research field bringing transparency to highly complex machine learning (ML) models.
This paper offers a comprehensive overview over techniques that apply XAI practically for improving various properties of ML models.
We show empirically through experiments on toy and realistic settings how explanations can help improve properties such as model generalization ability or reasoning.
arXiv Detail & Related papers (2022-03-15T15:44:28Z) - MUC-driven Feature Importance Measurement and Adversarial Analysis for
Random Forest [1.5896078006029473]
We leverage formal methods and logical reasoning to develop a novel model-specific method for explaining the prediction of Random Forest (RF)
Our approach is centered around Minimal Unsatisfiable Cores (MUC) and provides a comprehensive solution for feature importance, covering local and global aspects, and adversarial sample analysis.
Our method can produce a user-centered report, which helps provide recommendations in real-life applications.
arXiv Detail & Related papers (2022-02-25T06:15:47Z) - Developing a Fidelity Evaluation Approach for Interpretable Machine
Learning [2.2448567386846916]
Explainable AI (XAI) methods are used to improve the interpretability of complex models.
In particular, methods to evaluate the fidelity of the explanation to the underlying black box require further development.
Our evaluations suggest that the internal mechanism of the underlying predictive model, the internal mechanism of the explainable method used and model and data complexity all affect explanation fidelity.
arXiv Detail & Related papers (2021-06-16T00:21:16Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Survey of explainable machine learning with visual and granular methods
beyond quasi-explanations [0.0]
We focus on moving from quasi-explanations that dominate in ML to domain-specific explanation supported by granular visuals.
The paper includes results on theoretical limits to preserve n-D distances in lower dimensions, based on the Johnson-Lindenstrauss lemma.
arXiv Detail & Related papers (2020-09-21T23:39:06Z) - General Pitfalls of Model-Agnostic Interpretation Methods for Machine
Learning Models [1.025459377812322]
We highlight many general pitfalls of machine learning model interpretation, such as using interpretation techniques in the wrong context.
We focus on pitfalls for global methods that describe the average model behavior, but many pitfalls also apply to local methods that explain individual predictions.
arXiv Detail & Related papers (2020-07-08T14:02:56Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
We propose to adopt the post-hoc method to tackle the interpretability issue for deep learning based knowledge tracing (DLKT) models.
Specifically, we focus on applying the layer-wise relevance propagation (LRP) method to interpret RNN-based DLKT model.
Experiment results show the feasibility using the LRP method for interpreting the DLKT model's predictions.
arXiv Detail & Related papers (2020-05-13T04:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.