Nuclei Instance Segmentation of Cryosectioned H&E Stained Histological Images using Triple U-Net Architecture
- URL: http://arxiv.org/abs/2404.12986v1
- Date: Fri, 19 Apr 2024 16:36:21 GMT
- Title: Nuclei Instance Segmentation of Cryosectioned H&E Stained Histological Images using Triple U-Net Architecture
- Authors: Zarif Ahmed, Chowdhury Nur E Alam Siddiqi, Fardifa Fathmiul Alam, Tasnim Ahmed, Tareque Mohmud Chowdhury,
- Abstract summary: This paper proposes a method that leverages the unique optical characteristics of H&E stained images.
A three-branch U-Net architecture has been implemented, where each branch contributes to the final segmentation results.
The results obtained through robust experiments outperform the state-of-the-art results across various metrics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclei instance segmentation is crucial in oncological diagnosis and cancer pathology research. H&E stained images are commonly used for medical diagnosis, but pre-processing is necessary before using them for image processing tasks. Two principal pre-processing methods are formalin-fixed paraffin-embedded samples (FFPE) and frozen tissue samples (FS). While FFPE is widely used, it is time-consuming, while FS samples can be processed quickly. Analyzing H&E stained images derived from fast sample preparation, staining, and scanning can pose difficulties due to the swift process, which can result in the degradation of image quality. This paper proposes a method that leverages the unique optical characteristics of H&E stained images. A three-branch U-Net architecture has been implemented, where each branch contributes to the final segmentation results. The process includes applying watershed algorithm to separate overlapping regions and enhance accuracy. The Triple U-Net architecture comprises an RGB branch, a Hematoxylin branch, and a Segmentation branch. This study focuses on a novel dataset named CryoNuSeg. The results obtained through robust experiments outperform the state-of-the-art results across various metrics. The benchmark score for this dataset is AJI 52.5 and PQ 47.7, achieved through the implementation of U-Net Architecture. However, the proposed Triple U-Net architecture achieves an AJI score of 67.41 and PQ of 50.56. The proposed architecture improves more on AJI than other evaluation metrics, which further justifies the superiority of the Triple U-Net architecture over the baseline U-Net model, as AJI is a more strict evaluation metric. The use of the three-branch U-Net model, followed by watershed post-processing, significantly surpasses the benchmark scores, showing substantial improvement in the AJI score
Related papers
- Semantic Segmentation Based Quality Control of Histopathology Whole Slide Images [2.953447779233234]
We developed a software pipeline for quality control (QC) of histopathology whole slide images (WSIs)
It segments various regions, such as blurs of different levels, tissue regions, tissue folds, and pen marks.
It was evaluated in all TCGAs, which is the largest publicly available WSI dataset containing more than 11,000 histopathology images from 28 organs.
arXiv Detail & Related papers (2024-10-04T10:03:04Z) - A Trio-Method for Retinal Vessel Segmentation using Image Processing [0.0]
This paper primarily focuses on the segmentation of retinal vessels using a triple preprocessing approach.
Two proposed U-Net architectures were compared in terms of all the standard performance metrics.
This real-time deployment can help in the efficient pre-processing of images with better segmentation and detection.
arXiv Detail & Related papers (2022-09-19T22:07:34Z) - Highly Accurate Dichotomous Image Segmentation [139.79513044546]
A new task called dichotomous image segmentation (DIS) aims to segment highly accurate objects from natural images.
We collect the first large-scale dataset, DIS5K, which contains 5,470 high-resolution (e.g., 2K, 4K or larger) images.
We also introduce a simple intermediate supervision baseline (IS-Net) using both feature-level and mask-level guidance for DIS model training.
arXiv Detail & Related papers (2022-03-06T20:09:19Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Boundary-Aware Segmentation Network for Mobile and Web Applications [60.815545591314915]
Boundary-Aware Network (BASNet) is integrated with a predict-refine architecture and a hybrid loss for highly accurate image segmentation.
BASNet runs at over 70 fps on a single GPU which benefits many potential real applications.
Based on BASNet, we further developed two (close to) commercial applications: AR COPY & PASTE, in which BASNet is augmented reality for "COPY" and "PASTING" real-world objects, and OBJECT CUT, which is a web-based tool for automatic object background removal.
arXiv Detail & Related papers (2021-01-12T19:20:26Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
"Traditional" encoder-decoder based approaches perform poorly in detecting smaller structures and are unable to segment boundary regions precisely.
We propose KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features.
The proposed method achieves a better performance as compared to all the recent methods with an additional benefit of fewer parameters and faster convergence.
arXiv Detail & Related papers (2020-10-04T19:23:33Z) - Greenhouse Segmentation on High-Resolution Optical Satellite Imagery
using Deep Learning Techniques [0.0]
This paper proposes a sound methodology for pixel-wise classification on images acquired by the Azersky (SPOT-7) optical satellite.
customized variations of U-Net-like architectures are employed to identify greenhouses.
Two models are proposed which uniquely incorporate dilated convolutions and skip connections.
arXiv Detail & Related papers (2020-07-22T06:12:57Z) - U-Net Based Architecture for an Improved Multiresolution Segmentation in
Medical Images [0.0]
We have proposed a fully convolutional neural network for image segmentation in a multi-resolution framework.
In the proposed architecture (mrU-Net), the input image and its down-sampled versions were used as the network inputs.
We trained and tested the network on four different medical datasets.
arXiv Detail & Related papers (2020-07-16T10:19:01Z) - Cyclic Differentiable Architecture Search [99.12381460261841]
Differentiable ARchiTecture Search, i.e., DARTS, has drawn great attention in neural architecture search.
We propose new joint objectives and a novel Cyclic Differentiable ARchiTecture Search framework, dubbed CDARTS.
In the DARTS search space, we achieve 97.52% top-1 accuracy on CIFAR10 and 76.3% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2020-06-18T17:55:19Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.