Completing the Quantum Reconstruction Program via the Relativity Principle
- URL: http://arxiv.org/abs/2404.13064v1
- Date: Fri, 12 Apr 2024 13:27:25 GMT
- Title: Completing the Quantum Reconstruction Program via the Relativity Principle
- Authors: W. M. Stuckey, Michael Silberstein, Timothy McDevitt,
- Abstract summary: We explain how the disparate kinematics of quantum mechanics can both be based on one principle.
This is made possible by the axiomatic reconstruction of QM via information-theoretic principles.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explain how the disparate kinematics of quantum mechanics (finite-dimensional Hilbert space of QM) and special relativity (Minkowski spacetime from the Lorentz transformations of SR) can both be based on one principle (relativity principle). This is made possible by the axiomatic reconstruction of QM via information-theoretic principles, which has successfully recast QM as a principle theory a la SR. That is, in the quantum reconstruction program (QRP) and SR, the formalisms (Hilbert space and Lorentz transformations, respectively) are derived from empirically discovered facts (Information Invariance & Continuity and light postulate, respectively), so QM and SR are "principle theories" as defined by Einstein. While SR has a compelling fundamental principle to justify its empirically discovered fact (relativity principle), QRP has not produced a compelling fundamental principle or causal mechanism to account for its empirically discovered fact. To unify these disparate kinematics, we show how the relativity principle ("no preferred reference frame" NPRF) can also be used to justify Information Invariance & Continuity. We do this by showing that when QRP's operational notion of measurement is spatialized, Information Invariance & Continuity entails the empirically discovered fact that everyone measures the same value for Planck's constant h, regardless of their relative spatial orientations or locations (Planck postulate). Since Poincare transformations relate inertial reference frames via spatial rotations and translations as well as boosts, the relativity principle justifies the Planck postulate just like it justifies the light postulate. Essentially, NPRF + c is an adynamical global constraint over the spacetime configuration of worldtubes for bodily objects while NPRF + h is an adynamical global constraint over the distribution of quanta among those bodily objects.
Related papers
- Quantum Effects on Cosmic Scales as an Alternative to Dark Matter and Dark Energy [5.577935944665]
We develop the spin-torsion theory to examine spherically symmetric and static gravitational systems.
We posit that the quantum spin of macroscopic matter becomes noteworthy at cosmic scales.
A crucial aspect of our approach involves substituting the constant mass in the Dirac equation with a scale function.
arXiv Detail & Related papers (2024-09-02T09:02:29Z) - Relational Quantum Mechanics, Quantum Relativism, and the Iteration of Relativity [0.0]
The idea that the dynamical properties of quantum systems are invariably relative to other systems has recently regained currency.
Are there absolute facts about the properties one system possesses relative to a specified reference, or is this again a relative matter, and so on?
I conclude with some reflections on the current state of play in perspectivist versions of RQM and quantum relativism more generally.
arXiv Detail & Related papers (2024-03-06T21:48:41Z) - Quantum Principle of Relativity and The Renormalizable Quantum Gravity [3.4447129363520337]
We develop a purely quantum theory based on the novel principle of relativity, termed the quantum principle of relativity.
We demonstrate that the essence of the principle of relativity can be naturally extended into the quantum realm, maintaining the identical structures of active and passive transformations.
arXiv Detail & Related papers (2023-12-04T10:49:56Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Quantum superposition of spacetimes obeys Einstein's Equivalence
Principle [0.0]
We argue that the Equivalence Principle can be generalised so that it holds for reference frames associated to quantum systems in a superposition of spacetimes.
This procedure reconciles the principle of linear superposition in Quantum Theory with the principle of general covariance and the Equivalence Principle of General Relativity.
arXiv Detail & Related papers (2021-09-03T09:51:18Z) - The Relativity Principle at the Foundation of Quantum Mechanics [0.0]
We show how one principle, Information Invariance & Continuity, at the foundation of axiomatic reconstructions maps to "no preferred reference frame"
This is in exact analogy to the relativity principle as it pertains to the invariant measurement of Planck's constant h for Stern-Gerlach (SG) spin measurements.
arXiv Detail & Related papers (2021-07-14T19:11:28Z) - Fully Symmetric Relativistic Quantum Mechanics and Its Physical
Implications [0.0]
A new formulation of relativistic quantum mechanics is presented and applied to a free, massive, and spin zero elementary particle in the Minkowski spacetime.
The reformulation requires that time and space, as well as the timelike and spacelike intervals, are treated equally, which makes the new theory fully symmetric and consistent with the Special Theory of Relativity.
arXiv Detail & Related papers (2021-05-31T19:13:19Z) - Gentle Measurement as a Principle of Quantum Theory [9.137554315375919]
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics.
We show, within the framework of general probabilistic theories, that GMP imposes strong restrictions on the law of physics.
arXiv Detail & Related papers (2021-03-28T11:59:49Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.