SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
- URL: http://arxiv.org/abs/2404.13081v1
- Date: Wed, 17 Apr 2024 01:15:54 GMT
- Title: SuRe: Summarizing Retrievals using Answer Candidates for Open-domain QA of LLMs
- Authors: Jaehyung Kim, Jaehyun Nam, Sangwoo Mo, Jongjin Park, Sang-Woo Lee, Minjoon Seo, Jung-Woo Ha, Jinwoo Shin,
- Abstract summary: We propose a simple yet effective framework to enhance open-domain question answering (ODQA) with large language models (LLMs)
SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval (SuRe)
Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches.
- Score: 85.54906813106683
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Large language models (LLMs) have made significant advancements in various natural language processing tasks, including question answering (QA) tasks. While incorporating new information with the retrieval of relevant passages is a promising way to improve QA with LLMs, the existing methods often require additional fine-tuning which becomes infeasible with recent LLMs. Augmenting retrieved passages via prompting has the potential to address this limitation, but this direction has been limitedly explored. To this end, we design a simple yet effective framework to enhance open-domain QA (ODQA) with LLMs, based on the summarized retrieval (SuRe). SuRe helps LLMs predict more accurate answers for a given question, which are well-supported by the summarized retrieval that could be viewed as an explicit rationale extracted from the retrieved passages. Specifically, SuRe first constructs summaries of the retrieved passages for each of the multiple answer candidates. Then, SuRe confirms the most plausible answer from the candidate set by evaluating the validity and ranking of the generated summaries. Experimental results on diverse ODQA benchmarks demonstrate the superiority of SuRe, with improvements of up to 4.6% in exact match (EM) and 4.0% in F1 score over standard prompting approaches. SuRe also can be integrated with a broad range of retrieval methods and LLMs. Finally, the generated summaries from SuRe show additional advantages to measure the importance of retrieved passages and serve as more preferred rationales by models and humans.
Related papers
- Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
Large language models (LLMs) often struggle with posing the right search queries.
We introduce $underlineLe$arning to $underlineRe$trieve by $underlineT$rying (LeReT)
LeReT can improve the absolute retrieval accuracy by up to 29% and the downstream generator evaluations by 17%.
arXiv Detail & Related papers (2024-10-30T17:02:54Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge.
To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources.
We propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - Passage-specific Prompt Tuning for Passage Reranking in Question Answering with Large Language Models [11.716595438057997]
We propose passage-specific prompt tuning for reranking in open-domain question answering (PSPT)
PSPT is a parameter-efficient method that fine-tunes learnable passage-specific soft prompts.
We conducted extensive experiments utilizing the Llama-2-chat-7B model across three publicly available open-domain question answering datasets.
arXiv Detail & Related papers (2024-05-31T07:43:42Z) - Effective Large Language Model Adaptation for Improved Grounding and Citation Generation [48.07830615309543]
This paper focuses on improving large language models (LLMs) by grounding their responses in retrieved passages and by providing citations.
We propose a new framework, AGREE, that improves the grounding from a holistic perspective.
Our framework tunes LLMs to selfground the claims in their responses and provide accurate citations to retrieved documents.
arXiv Detail & Related papers (2023-11-16T03:22:25Z) - Rescue: Ranking LLM Responses with Partial Ordering to Improve Response Generation [28.89786334298637]
We develop a novel method to optimize LLMs using ranking metrics.
Rather than a traditional full ordering, we advocate for a partial ordering.
We test our system's improved response generation ability using benchmark datasets.
arXiv Detail & Related papers (2023-11-15T17:27:14Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for
In-Context Learning [66.85379279041128]
In this study, we introduce a framework that leverages Dual Queries and Low-rank approximation Re-ranking to automatically select exemplars for in-context learning.
DQ-LoRe significantly outperforms prior state-of-the-art methods in the automatic selection of exemplars for GPT-4, enhancing performance from 92.5% to 94.2%.
arXiv Detail & Related papers (2023-10-04T16:44:37Z) - Modeling Uncertainty and Using Post-fusion as Fallback Improves Retrieval Augmented Generation with LLMs [80.74263278847063]
The integration of retrieved passages and large language models (LLMs) has significantly contributed to improving open-domain question answering.
This paper investigates different methods of combining retrieved passages with LLMs to enhance answer generation.
arXiv Detail & Related papers (2023-08-24T05:26:54Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.