Multiclass ROC
- URL: http://arxiv.org/abs/2404.13147v1
- Date: Fri, 19 Apr 2024 19:25:10 GMT
- Title: Multiclass ROC
- Authors: Liang Wang, Luis Carvalho,
- Abstract summary: We provide an evaluation metric summarizing the pair-wise multi-class True Positive Rate (TPR) and False Positive Rate (FPR)
An integration over those factorized vector provides a binary AUC-equivalent summary on the performance.
To support our findings, we conducted extensive simulation studies and compared our method to the pair-wise averaged AUC statistics on benchmark datasets.
- Score: 6.941573057921458
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Model evaluation is of crucial importance in modern statistics application. The construction of ROC and calculation of AUC have been widely used for binary classification evaluation. Recent research generalizing the ROC/AUC analysis to multi-class classification has problems in at least one of the four areas: 1. failure to provide sensible plots 2. being sensitive to imbalanced data 3. unable to specify mis-classification cost and 4. unable to provide evaluation uncertainty quantification. Borrowing from a binomial matrix factorization model, we provide an evaluation metric summarizing the pair-wise multi-class True Positive Rate (TPR) and False Positive Rate (FPR) with one-dimensional vector representation. Visualization on the representation vector measures the relative speed of increment between TPR and FPR across all the classes pairs, which in turns provides a ROC plot for the multi-class counterpart. An integration over those factorized vector provides a binary AUC-equivalent summary on the classifier performance. Mis-clasification weights specification and bootstrapped confidence interval are also enabled to accommodate a variety of of evaluation criteria. To support our findings, we conducted extensive simulation studies and compared our method to the pair-wise averaged AUC statistics on benchmark datasets.
Related papers
- Risk-based Calibration for Probabilistic Classifiers [4.792851066169872]
We introduce a general iterative procedure called risk-based calibration (RC) to minimize the empirical risk under the 0-1 loss.
RC improves the empirical error of the original closed-form learning algorithms and, more notably, consistently outperforms the gradient descent approach.
arXiv Detail & Related papers (2024-09-05T14:06:56Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
Conventional detectors suffer from performance degradation when dealing with long-tailed data due to a classification bias towards the majority head categories.
We introduce a unified framework called BAlanced CLassification (BACL), which enables adaptive rectification of inequalities caused by disparities in category distribution.
BACL consistently achieves performance improvements across various datasets with different backbones and architectures.
arXiv Detail & Related papers (2023-08-04T09:11:07Z) - Multi-Classification using One-versus-One Deep Learning Strategy with
Joint Probability Estimates [0.0]
The proposed model achieves generally higher classification accuracy than other state-of-the-art models.
Numerical experiments in different applications show that the proposed model achieves generally higher classification accuracy than other state-of-the-art models.
arXiv Detail & Related papers (2023-06-16T07:54:15Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator [60.799183326613395]
We propose an unbiased estimator for categorical random variables based on multiple mutually negatively correlated (jointly antithetic) samples.
CARMS combines REINFORCE with copula based sampling to avoid duplicate samples and reduce its variance, while keeping the estimator unbiased using importance sampling.
We evaluate CARMS on several benchmark datasets on a generative modeling task, as well as a structured output prediction task, and find it to outperform competing methods including a strong self-control baseline.
arXiv Detail & Related papers (2021-10-26T20:14:30Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes.
We propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.
arXiv Detail & Related papers (2020-10-12T19:47:09Z) - Improved Design of Quadratic Discriminant Analysis Classifier in
Unbalanced Settings [19.763768111774134]
quadratic discriminant analysis (QDA) or its regularized version (R-QDA) for classification is often not recommended.
We propose an improved R-QDA that is based on the use of two regularization parameters and a modified bias.
arXiv Detail & Related papers (2020-06-11T12:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.