STAT: Towards Generalizable Temporal Action Localization
- URL: http://arxiv.org/abs/2404.13311v1
- Date: Sat, 20 Apr 2024 07:56:21 GMT
- Title: STAT: Towards Generalizable Temporal Action Localization
- Authors: Yangcen Liu, Ziyi Liu, Yuanhao Zhai, Wen Li, David Doerman, Junsong Yuan,
- Abstract summary: Weakly-supervised temporal action localization (WTAL) aims to recognize and localize action instances with only video-level labels.
Existing methods suffer from severe performance degradation when transferring to different distributions.
We propose GTAL, which focuses on improving the generalizability of action localization methods.
- Score: 56.634561073746056
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly-supervised temporal action localization (WTAL) aims to recognize and localize action instances with only video-level labels. Despite the significant progress, existing methods suffer from severe performance degradation when transferring to different distributions and thus may hardly adapt to real-world scenarios . To address this problem, we propose the Generalizable Temporal Action Localization task (GTAL), which focuses on improving the generalizability of action localization methods. We observed that the performance decline can be primarily attributed to the lack of generalizability to different action scales. To address this problem, we propose STAT (Self-supervised Temporal Adaptive Teacher), which leverages a teacher-student structure for iterative refinement. Our STAT features a refinement module and an alignment module. The former iteratively refines the model's output by leveraging contextual information and helps adapt to the target scale. The latter improves the refinement process by promoting a consensus between student and teacher models. We conduct extensive experiments on three datasets, THUMOS14, ActivityNet1.2, and HACS, and the results show that our method significantly improves the Baseline methods under the cross-distribution evaluation setting, even approaching the same-distribution evaluation performance.
Related papers
- Information Guided Regularization for Fine-tuning Language Models [11.831883526217942]
We argue that a more surgical approach to regularization needs to exist for smoother transfer learning.
We devise a novel approach to dropout for improved model regularization and better downstream generalization.
arXiv Detail & Related papers (2024-06-20T05:18:37Z) - ReCoRe: Regularized Contrastive Representation Learning of World Model [21.29132219042405]
We present a world model that learns invariant features using contrastive unsupervised learning and an intervention-invariant regularizer.
Our method outperforms current state-of-the-art model-based and model-free RL methods and significantly improves on out-of-distribution point navigation tasks evaluated on the iGibson benchmark.
arXiv Detail & Related papers (2023-12-14T15:53:07Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - Weakly-Supervised Action Localization by Hierarchically-structured
Latent Attention Modeling [19.683714649646603]
Weakly-supervised action localization aims to recognize and localize action instancese in untrimmed videos with only video-level labels.
Most existing models rely on multiple instance learning(MIL), where predictions of unlabeled instances are supervised by classifying labeled bags.
We propose a novel attention-based hierarchically-structured latent model to learn the temporal variations of feature semantics.
arXiv Detail & Related papers (2023-08-19T08:45:49Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Zero-Shot Temporal Action Detection via Vision-Language Prompting [134.26292288193298]
We propose a novel zero-Shot Temporal Action detection model via Vision-LanguagE prompting (STALE)
Our model significantly outperforms state-of-the-art alternatives.
Our model also yields superior results on supervised TAD over recent strong competitors.
arXiv Detail & Related papers (2022-07-17T13:59:46Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
We study the modality bias problem in the context of multi-modal classification.
We propose a plug-and-play loss function method, whereby the feature space for each label is adaptively learned.
Our method yields remarkable performance improvements compared with the baselines.
arXiv Detail & Related papers (2022-02-25T13:47:09Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S-temporal action localization is an important problem in computer vision.
We propose an end-to-end unsupervised domain adaptation algorithm.
We show that significant performance gain can be achieved when spatial and temporal features are adapted separately or jointly.
arXiv Detail & Related papers (2020-10-19T04:25:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.