Large Language Models as Test Case Generators: Performance Evaluation and Enhancement
- URL: http://arxiv.org/abs/2404.13340v1
- Date: Sat, 20 Apr 2024 10:27:01 GMT
- Title: Large Language Models as Test Case Generators: Performance Evaluation and Enhancement
- Authors: Kefan Li, Yuan Yuan,
- Abstract summary: We study how well Large Language Models can generate high-quality test cases.
We propose a multi-agent framework called emphTestChain that decouples the generation of test inputs and test outputs.
Our results indicate that TestChain outperforms the baseline by a large margin.
- Score: 3.5398126682962587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code generation with Large Language Models (LLMs) has been extensively studied and achieved remarkable progress. As a complementary aspect to code generation, test case generation is of crucial importance in ensuring the quality and reliability of code. However, using LLMs as test case generators has been much less explored. Current research along this line primarily focuses on enhancing code generation with assistance from test cases generated by LLMs, while the performance of LLMs in test case generation alone has not been comprehensively examined. To bridge this gap, we conduct extensive experiments to study how well LLMs can generate high-quality test cases. We find that as the problem difficulty increases, state-of-the-art LLMs struggle to generate correct test cases, largely due to their inherent limitations in computation and reasoning. To mitigate this issue, we further propose a multi-agent framework called \emph{TestChain} that decouples the generation of test inputs and test outputs. Notably, TestChain uses a ReAct format conversation chain for LLMs to interact with a Python interpreter in order to provide more accurate test outputs. Our results indicate that TestChain outperforms the baseline by a large margin. Particularly, in terms of the accuracy of test cases, TestChain using GPT-4 as the backbone achieves a 13.84\% improvement over the baseline on the LeetCode-hard dataset.
Related papers
- ProjectTest: A Project-level LLM Unit Test Generation Benchmark and Impact of Error Fixing Mechanisms [48.43237545197775]
Unit test generation has become a promising and important use case of LLMs.
ProjectTest is a project-level benchmark for unit test generation covering Python, Java, and JavaScript.
arXiv Detail & Related papers (2025-02-10T15:24:30Z) - Improving the Readability of Automatically Generated Tests using Large Language Models [7.7149881834358345]
We propose to combine the effectiveness of search-based generators with the readability of LLM generated tests.
Our approach focuses on improving test and variable names produced by search-based tools, while keeping their semantics unchanged.
arXiv Detail & Related papers (2024-12-25T09:08:53Z) - ASTER: Natural and Multi-language Unit Test Generation with LLMs [6.259245181881262]
We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases.
We conduct an empirical study to assess the quality of the generated tests in terms of code coverage and test naturalness.
arXiv Detail & Related papers (2024-09-04T21:46:18Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
We investigate the capability of LLM-based Code Agents to formalize user issues into test cases.
We propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth bug-fixes, and golden tests.
We find that LLMs generally perform surprisingly well at generating relevant test cases, with Code Agents designed for code repair exceeding the performance of systems designed for test generation.
arXiv Detail & Related papers (2024-06-18T14:54:37Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Code-Aware Prompting: A study of Coverage Guided Test Generation in Regression Setting using LLM [32.44432906540792]
We present SymPrompt, a code-aware prompting strategy for large language models in test generation.
SymPrompt enhances correct test generations by a factor of 5 and bolsters relative coverage by 26% for CodeGen2.
Notably, when applied to GPT-4, SymPrompt improves coverage by over 2x compared to baseline prompting strategies.
arXiv Detail & Related papers (2024-01-31T18:21:49Z) - Effective Test Generation Using Pre-trained Large Language Models and
Mutation Testing [13.743062498008555]
We introduce MuTAP for improving the effectiveness of test cases generated by Large Language Models (LLMs) in terms of revealing bugs.
MuTAP is capable of generating effective test cases in the absence of natural language descriptions of the Program Under Test (PUTs)
Our results show that our proposed method is able to detect up to 28% more faulty human-written code snippets.
arXiv Detail & Related papers (2023-08-31T08:48:31Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z) - CodeT: Code Generation with Generated Tests [49.622590050797236]
We explore the use of pre-trained language models to automatically generate test cases.
CodeT executes the code solutions using the generated test cases, and then chooses the best solution.
We evaluate CodeT on five different pre-trained models with both HumanEval and MBPP benchmarks.
arXiv Detail & Related papers (2022-07-21T10:18:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.