Efficient and Concise Explanations for Object Detection with Gaussian-Class Activation Mapping Explainer
- URL: http://arxiv.org/abs/2404.13417v1
- Date: Sat, 20 Apr 2024 16:11:47 GMT
- Title: Efficient and Concise Explanations for Object Detection with Gaussian-Class Activation Mapping Explainer
- Authors: Quoc Khanh Nguyen, Truong Thanh Hung Nguyen, Vo Thanh Khang Nguyen, Van Binh Truong, Tuong Phan, Hung Cao,
- Abstract summary: We introduce the Gaussian Class Activation Mapping Explainer (G-CAME)
G-CAME significantly reduces explanation time to 0.5 seconds without compromising the quality.
Our evaluation of G-CAME, using Faster-RCNN and YOLOX on the MS-COCO 2017 dataset, demonstrates its ability to offer highly plausible and faithful explanations.
- Score: 3.2766072866432867
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: To address the challenges of providing quick and plausible explanations in Explainable AI (XAI) for object detection models, we introduce the Gaussian Class Activation Mapping Explainer (G-CAME). Our method efficiently generates concise saliency maps by utilizing activation maps from selected layers and applying a Gaussian kernel to emphasize critical image regions for the predicted object. Compared with other Region-based approaches, G-CAME significantly reduces explanation time to 0.5 seconds without compromising the quality. Our evaluation of G-CAME, using Faster-RCNN and YOLOX on the MS-COCO 2017 dataset, demonstrates its ability to offer highly plausible and faithful explanations, especially in reducing the bias on tiny object detection.
Related papers
- Leveraging Activations for Superpixel Explanations [2.8792218859042453]
Saliency methods have become standard in the explanation toolkit of deep neural networks.
In this paper, we aim to avoid relying on segmenters by extracting a segmentation from the activations of a deep neural network image classifier.
Our so-called Neuro-Activated Superpixels (NAS) can isolate the regions of interest in the input relevant to the model's prediction.
arXiv Detail & Related papers (2024-06-07T13:37:45Z) - Rethinking Class Activation Maps for Segmentation: Revealing Semantic
Information in Shallow Layers by Reducing Noise [2.462953128215088]
A major limitation to the performance of the class activation maps is the small spatial resolution of the feature maps in the last layer of the convolutional neural network.
We propose a simple gradient-based denoising method to filter the noise by truncating the positive gradient.
Our proposed scheme can be easily deployed in other CAM-related methods, facilitating these methods to obtain higher-quality class activation maps.
arXiv Detail & Related papers (2023-08-04T03:04:09Z) - Efficient GNN Explanation via Learning Removal-based Attribution [56.18049062940675]
We propose a framework of GNN explanation named LeArn Removal-based Attribution (LARA) to address this problem.
The explainer in LARA learns to generate removal-based attribution which enables providing explanations with high fidelity.
In particular, LARA is 3.5 times faster and achieves higher fidelity than the state-of-the-art method on the large dataset ogbn-arxiv.
arXiv Detail & Related papers (2023-06-09T08:54:20Z) - G-CAME: Gaussian-Class Activation Mapping Explainer for Object Detectors [0.0]
G-CAME generates a saliency map as the explanation for object detection models.
We evaluated our method with YOLOX on the MS-COCO 2017 dataset and guided to apply G-CAME into the two-stage Faster-RCNN model.
arXiv Detail & Related papers (2023-06-06T04:30:18Z) - Poly-CAM: High resolution class activation map for convolutional neural
networks [88.29660600055715]
saliency maps derived from convolutional neural networks generally fail in localizing with accuracy the image features justifying the network prediction.
This is because those maps are either low-resolution as for CAM [Zhou et al., 2016], or smooth as for perturbation-based methods [Zeiler and Fergus, 2014], or do correspond to a large number of widespread peaky spots.
In contrast, our work proposes to combine the information from earlier network layers with the one from later layers to produce a high resolution Class Activation Map.
arXiv Detail & Related papers (2022-04-28T09:06:19Z) - GCA-Net : Utilizing Gated Context Attention for Improving Image Forgery
Localization and Detection [0.9883261192383611]
We propose a novel Gated Context Attention Network (GCA-Net) that utilizes the non-local attention block for global context learning.
We show that our method outperforms state-of-the-art networks by an average of 4.2%-5.4% AUC on multiple benchmark datasets.
arXiv Detail & Related papers (2021-12-08T14:13:14Z) - TSG: Target-Selective Gradient Backprop for Probing CNN Visual Saliency [72.9106103283475]
We study the visual saliency, a.k.a. visual explanation, to interpret convolutional neural networks.
Inspired by those observations, we propose a novel visual saliency framework, termed Target-Selective Gradient (TSG) backprop.
The proposed TSG consists of two components, namely, TSG-Conv and TSG-FC, which rectify the gradients for convolutional layers and fully-connected layers, respectively.
arXiv Detail & Related papers (2021-10-11T12:00:20Z) - CAMERAS: Enhanced Resolution And Sanity preserving Class Activation
Mapping for image saliency [61.40511574314069]
Backpropagation image saliency aims at explaining model predictions by estimating model-centric importance of individual pixels in the input.
We propose CAMERAS, a technique to compute high-fidelity backpropagation saliency maps without requiring any external priors.
arXiv Detail & Related papers (2021-06-20T08:20:56Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z) - Learning Gaussian Maps for Dense Object Detection [1.8275108630751844]
We review common and highly accurate object detection methods on the scenes where numerous similar looking objects are placed in close proximity with each other.
We show that, multi-task learning of gaussian maps along with classification and bounding box regression gives us a significant boost in accuracy over the baseline.
Our method also achieves the state of the art accuracy on the SKU110K citesku110k dataset.
arXiv Detail & Related papers (2020-04-24T17:01:25Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.