Error Analysis of Shapley Value-Based Model Explanations: An Informative Perspective
- URL: http://arxiv.org/abs/2404.13522v2
- Date: Thu, 30 May 2024 01:56:53 GMT
- Title: Error Analysis of Shapley Value-Based Model Explanations: An Informative Perspective
- Authors: Ningsheng Zhao, Jia Yuan Yu, Krzysztof Dzieciolowski, Trang Bui,
- Abstract summary: Shapley value attribution (SVA) is an increasingly popular explainable AI (XAI) method, which quantifies the contribution of each feature to the model's output.
Recent work has shown that most existing methods to implement SVAs have some drawbacks, resulting in biased or unreliable explanations.
We propose a novel error theoretical analysis framework, in which the explanation errors of SVAs are decomposed into two components: observation bias and structural bias.
- Score: 1.5186937600119894
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Shapley value attribution (SVA) is an increasingly popular explainable AI (XAI) method, which quantifies the contribution of each feature to the model's output. However, recent work has shown that most existing methods to implement SVAs have some drawbacks, resulting in biased or unreliable explanations that fail to correctly capture the true intrinsic relationships between features and model outputs. Moreover, the mechanism and consequences of these drawbacks have not been discussed systematically. In this paper, we propose a novel error theoretical analysis framework, in which the explanation errors of SVAs are decomposed into two components: observation bias and structural bias. We further clarify the underlying causes of these two biases and demonstrate that there is a trade-off between them. Based on this error analysis framework, we develop two novel concepts: over-informative and underinformative explanations. We demonstrate how these concepts can be effectively used to understand potential errors of existing SVA methods. In particular, for the widely deployed assumption-based SVAs, we find that they can easily be under-informative due to the distribution drift caused by distributional assumptions. We propose a measurement tool to quantify such a distribution drift. Finally, our experiments illustrate how different existing SVA methods can be over- or under-informative. Our work sheds light on how errors incur in the estimation of SVAs and encourages new less error-prone methods.
Related papers
- Are We Merely Justifying Results ex Post Facto? Quantifying Explanatory Inversion in Post-Hoc Model Explanations [87.68633031231924]
Post-hoc explanation methods provide interpretation by attributing predictions to input features.
Do these explanations unintentionally reverse the natural relationship between inputs and outputs?
We propose Inversion Quantification (IQ), a framework that quantifies the degree to which explanations rely on outputs and deviate from faithful input-output relationships.
arXiv Detail & Related papers (2025-04-11T19:00:12Z) - F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI [15.314388210699443]
Fine-tuned Fidelity F-Fidelity is a robust evaluation framework for XAI.
We show that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of explainers.
We also show that given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components.
arXiv Detail & Related papers (2024-10-03T20:23:06Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Debiasing Multimodal Models via Causal Information Minimization [65.23982806840182]
We study bias arising from confounders in a causal graph for multimodal data.
Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data.
We use these features as confounder representations and use them via methods motivated by causal theory to remove bias from models.
arXiv Detail & Related papers (2023-11-28T16:46:14Z) - Theoretical Evaluation of Asymmetric Shapley Values for Root-Cause
Analysis [0.0]
Asymmetric Shapley Values (ASV) is a variant of the popular SHAP additive local explanation method.
We show how local contributions correspond to global contributions of variance reduction.
We identify generalized additive models (GAM) as a restricted class for which ASV exhibits desirable properties.
arXiv Detail & Related papers (2023-10-15T21:40:16Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
We focus on the analysis of counterfactual, contrastive explanations.
We propose a new back translation-inspired evaluation methodology.
We show that by iteratively feeding the counterfactual to the explainer we can obtain valuable insights into the behaviour of both the predictor and the explainer models.
arXiv Detail & Related papers (2023-05-26T16:04:28Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Loss function based second-order Jensen inequality and its application
to particle variational inference [112.58907653042317]
Particle variational inference (PVI) uses an ensemble of models as an empirical approximation for the posterior distribution.
PVI iteratively updates each model with a repulsion force to ensure the diversity of the optimized models.
We derive a novel generalization error bound and show that it can be reduced by enhancing the diversity of models.
arXiv Detail & Related papers (2021-06-09T12:13:51Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.