Test-Time Training on Graphs with Large Language Models (LLMs)
- URL: http://arxiv.org/abs/2404.13571v1
- Date: Sun, 21 Apr 2024 08:20:02 GMT
- Title: Test-Time Training on Graphs with Large Language Models (LLMs)
- Authors: Jiaxin Zhang, Yiqi Wang, Xihong Yang, Siwei Wang, Yu Feng, Yu Shi, Ruicaho Ren, En Zhu, Xinwang Liu,
- Abstract summary: Test-Time Training (TTT) has been proposed as a promising approach to train Graph Neural Networks (GNNs)
Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators.
A two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels.
- Score: 68.375487369596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks have demonstrated great success in various fields of multimedia. However, the distribution shift between the training and test data challenges the effectiveness of GNNs. To mitigate this challenge, Test-Time Training (TTT) has been proposed as a promising approach. Traditional TTT methods require a demanding unsupervised training strategy to capture the information from test to benefit the main task. Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators. In this paper, we design a novel Test-Time Training pipeline, LLMTTT, which conducts the test-time adaptation under the annotations by LLMs on a carefully-selected node set. Specifically, LLMTTT introduces a hybrid active node selection strategy that considers not only node diversity and representativeness, but also prediction signals from the pre-trained model. Given annotations from LLMs, a two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels. A theoretical analysis ensures the validity of our method and extensive experiments demonstrate that the proposed LLMTTT can achieve a significant performance improvement compared to existing Out-of-Distribution (OOD) generalization methods.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - STAGE: Simplified Text-Attributed Graph Embeddings Using Pre-trained LLMs [1.4624458429745086]
We present a method for enhancing node features in Graph Neural Network (GNN) models that encode Text-Attributed Graphs (TAGs)
Our approach leverages Large-Language Models (LLMs) to generate embeddings for textual attributes.
We show that utilizing pre-trained LLMs as embedding generators provides robust features for ensemble GNN training.
arXiv Detail & Related papers (2024-07-10T08:50:25Z) - Unsupervised Pre-training with Language-Vision Prompts for Low-Data Instance Segmentation [105.23631749213729]
We propose a novel method for unsupervised pre-training in low-data regimes.
Inspired by the recently successful prompting technique, we introduce a new method, Unsupervised Pre-training with Language-Vision Prompts.
We show that our method can converge faster and perform better than CNN-based models in low-data regimes.
arXiv Detail & Related papers (2024-05-22T06:48:43Z) - In-context Prompt Learning for Test-time Vision Recognition with Frozen Vision-language Model [13.983810804606264]
We propose In-Context Prompt Learning (InCPL) for test-time visual recognition tasks.
InCPL associates a new test sample with very few labeled examples as context information.
We introduce a context-aware unsupervised loss to optimize visual prompts tailored to test samples.
arXiv Detail & Related papers (2024-03-10T08:15:51Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - Test-Time Training for Graph Neural Networks [46.479026988929235]
We introduce the first test-time training framework for GNNs to enhance the model generalization capacity for the graph classification task.
In particular, we design a novel test-time training strategy with self-supervised learning to adjust the GNN model for each test graph sample.
arXiv Detail & Related papers (2022-10-17T07:58:07Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - Test-Time Prompt Tuning for Zero-Shot Generalization in Vision-Language
Models [107.05966685291067]
We propose test-time prompt tuning (TPT) to learn adaptive prompts on the fly with a single test sample.
TPT improves the zero-shot top-1 accuracy of CLIP by 3.6% on average.
In evaluating cross-dataset generalization with unseen categories, TPT performs on par with the state-of-the-art approaches that use additional training data.
arXiv Detail & Related papers (2022-09-15T17:55:11Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
We introduce a novel framework to improve the fine-tuning phase of pre-trained language models (PLMs)
We retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to a task.
We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features.
arXiv Detail & Related papers (2021-02-07T09:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.