A sustainable development perspective on urban-scale roof greening priorities and benefits
- URL: http://arxiv.org/abs/2404.13692v1
- Date: Sun, 21 Apr 2024 15:40:41 GMT
- Title: A sustainable development perspective on urban-scale roof greening priorities and benefits
- Authors: Jie Shao, Wei Yao, Lei Luo, Linzhou Zeng, Zhiyi He, Puzuo Wang, Huadong Guo,
- Abstract summary: We conduct an urban-scale assessment of roof greening at a single building level in Hong Kong.
We identify that 85.3% of buildings reveal potential and urgent demand for roof greening.
Green roofs could increase greenspace exposure by textasciitilde61% and produce hundreds of millions (HK$) in economic benefits annually.
- Score: 14.560102432242308
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Greenspaces are tightly linked to human well-being. Yet, rapid urbanization has exacerbated greenspace exposure inequality and declining human life quality. Roof greening has been recognized as an effective strategy to mitigate these negative impacts. Understanding priorities and benefits is crucial to promoting green roofs. Here, using geospatial big data, we conduct an urban-scale assessment of roof greening at a single building level in Hong Kong from a sustainable development perspective. We identify that 85.3\% of buildings reveal potential and urgent demand for roof greening. We further find green roofs could increase greenspace exposure by \textasciitilde61\% and produce hundreds of millions (HK\$) in economic benefits annually but play a small role in urban heat mitigation (\textasciitilde0.15\degree{C}) and annual carbon emission offsets (\textasciitilde0.8\%). Our study offers a comprehensive assessment of roof greening, which could provide reference for sustainable development in cities worldwide, from data utilization to solutions and findings.
Related papers
- The unrealized potential of agroforestry for an emissions-intensive agricultural commodity [48.652015514785546]
We use machine learning to generate estimates of shade-tree cover and carbon stocks across a West African region.
We find that existing shade-tree cover is low, and not spatially aligned with climate threat.
But we also find enormous unrealized potential for the sector to counterbalance a large proportion of their high carbon footprint annually.
arXiv Detail & Related papers (2024-10-28T10:02:32Z) - URSimulator: Human-Perception-Driven Prompt Tuning for Enhanced Virtual Urban Renewal via Diffusion Models [10.498291811234726]
Urban Physical Disorder negatively impacts safety, well-being, and psychological state of communities.
Urban Renewal is the process of revitalizing neglected and decayed areas within a city to improve the physical environment and quality of life for residents.
Current research lacks simulation tools that can quantitatively assess and visualize the impacts of renewal efforts.
This paper presents a novel framework using human perception feedback to simulate street environment enhancement.
arXiv Detail & Related papers (2024-09-22T20:39:32Z) - Multimodal Power Outage Prediction for Rapid Disaster Response and Resource Allocation [42.97753005297686]
underrepresented communities that are most affected often receive infrastructure improvements last.
We propose a novel visualtemporal framework for predicting severity of nighttime lights (LNT), power outage and location before and after major hurricanes.
Our work brings awareness to underrepresented areas in urgent need of enhanced energy infrastructure, such as future photovoltaic (PV) deployment.
arXiv Detail & Related papers (2024-09-14T21:35:29Z) - GlobalBuildingMap -- Unveiling the Mystery of Global Buildings [16.01396565010977]
We created the highest resolution and highest accuracy building map ever created: the GlobalBuildingMap (GBM)
A joint analysis of building maps and solar potentials indicates that rooftop solar energy can supply the global energy consumption need at a reasonable cost.
We also identified a clear geospatial correlation between building areas and key socioeconomic variables.
arXiv Detail & Related papers (2024-04-22T06:43:18Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition.
Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages.
Our study focuses on Central Eurasia, a region burdened with economic and social challenges.
arXiv Detail & Related papers (2023-10-24T15:15:28Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - On the need to move from a single indicator to a multi-dimensional
framework to measure accessibility to urban green [0.0]
We investigate the extent to which the use of a single metric provides a reliable assessment of green accessibility in a city.
The results suggest that, due to the complex interaction between the spatial distribution of greenspaces in an urban center and its population distribution, the use of a single indicator might lead to insufficient discrimination.
arXiv Detail & Related papers (2023-08-10T12:37:13Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
We propose a method for estimating building coverage using only publicly available low-resolution satellite imagery.
Our model achieves a coefficient of determination as high as 0.968 on predicting building coverage in regions of different levels of development around the world.
arXiv Detail & Related papers (2023-01-04T05:19:33Z) - Estimating Building Energy Efficiency From Street View Imagery, Aerial
Imagery, and Land Surface Temperature Data [0.0]
This work proposes a new method which can estimate a building's energy efficiency using purely remotely sensed data.
We find that in the binary setting of distinguishing efficient from inefficient buildings, our end-to-end deep learning model achieves a macro-averaged F1-score of 62.06%.
arXiv Detail & Related papers (2022-06-05T21:04:20Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Roofpedia: Automatic mapping of green and solar roofs for an open
roofscape registry and evaluation of urban sustainability [0.0]
Roofpedia is a set of three contributions: (i) automatic mapping of relevant urban roof typology from satellite imagery; (ii) an open roof registry mapping the spatial distribution and area of solar and green roofs of more than one million buildings across 17 cities; and (iii) the Roofpedia Index, a derivative of the registry, to benchmark the cities by the extent of sustainable roofscape in term of solar and green roof penetration.
arXiv Detail & Related papers (2020-12-22T13:34:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.