Elucidating the Design Space of Dataset Condensation
- URL: http://arxiv.org/abs/2404.13733v3
- Date: Sat, 05 Oct 2024 09:45:25 GMT
- Title: Elucidating the Design Space of Dataset Condensation
- Authors: Shitong Shao, Zikai Zhou, Huanran Chen, Zhiqiang Shen,
- Abstract summary: A concept within data-centric learning, dataset condensation efficiently transfers critical attributes from an original dataset to a synthetic version.
We propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching.
In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%.
- Score: 23.545641118984115
- License:
- Abstract: Dataset condensation, a concept within data-centric learning, efficiently transfers critical attributes from an original dataset to a synthetic version, maintaining both diversity and realism. This approach significantly improves model training efficiency and is adaptable across multiple application areas. Previous methods in dataset condensation have faced challenges: some incur high computational costs which limit scalability to larger datasets (e.g., MTT, DREAM, and TESLA), while others are restricted to less optimal design spaces, which could hinder potential improvements, especially in smaller datasets (e.g., SRe2L, G-VBSM, and RDED). To address these limitations, we propose a comprehensive design framework that includes specific, effective strategies like implementing soft category-aware matching and adjusting the learning rate schedule. These strategies are grounded in empirical evidence and theoretical backing. Our resulting approach, Elucidate Dataset Condensation (EDC), establishes a benchmark for both small and large-scale dataset condensation. In our testing, EDC achieves state-of-the-art accuracy, reaching 48.6% on ImageNet-1k with a ResNet-18 model at an IPC of 10, which corresponds to a compression ratio of 0.78%. This performance exceeds those of SRe2L, G-VBSM, and RDED by margins of 27.3%, 17.2%, and 6.6%, respectively.
Related papers
- Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
We propose a novel parameterization method dubbed Hierarchical Generative Latent Distillation (H-GLaD)
This method systematically explores hierarchical layers within the generative adversarial networks (GANs)
In addition, we introduce a novel class-relevant feature distance metric to alleviate the computational burden associated with synthetic dataset evaluation.
arXiv Detail & Related papers (2024-06-09T09:15:54Z) - Dataset Distillation via Adversarial Prediction Matching [24.487950991247764]
We propose an adversarial framework to solve the dataset distillation problem efficiently.
Our method can produce synthetic datasets just 10% the size of the original, yet achieve, on average, 94% of the test accuracy of models trained on the full original datasets.
arXiv Detail & Related papers (2023-12-14T13:19:33Z) - You Only Condense Once: Two Rules for Pruning Condensed Datasets [41.92794134275854]
You Only Condense Once (YOCO) produces smaller condensed datasets with two embarrassingly simple dataset pruning rules.
Experiments validate our findings on networks including ConvNet, ResNet and DenseNet.
arXiv Detail & Related papers (2023-10-21T14:05:58Z) - Dataset Condensation for Recommendation [29.239833773646975]
We propose a lightweight condensation framework tailored for recommendation (DConRec)
We model the discrete user-item interactions via a probabilistic approach and design a pre-augmentation module to incorporate the potential preferences of users into the condensed datasets.
Experimental results on multiple real-world datasets have demonstrated the effectiveness and efficiency of our framework.
arXiv Detail & Related papers (2023-10-02T09:30:11Z) - Dataset Quantization [72.61936019738076]
We present dataset quantization (DQ), a new framework to compress large-scale datasets into small subsets.
DQ is the first method that can successfully distill large-scale datasets such as ImageNet-1k with a state-of-the-art compression ratio.
arXiv Detail & Related papers (2023-08-21T07:24:29Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
We propose a novel dataset condensation method based on distribution matching.
Our simple yet effective method outperforms most previous optimization-oriented methods with much fewer computational resources.
arXiv Detail & Related papers (2023-07-19T04:07:33Z) - DC-BENCH: Dataset Condensation Benchmark [79.18718490863908]
This work provides the first large-scale standardized benchmark on dataset condensation.
It consists of a suite of evaluations to comprehensively reflect the generability and effectiveness of condensation methods.
The benchmark library is open-sourced to facilitate future research and application.
arXiv Detail & Related papers (2022-07-20T03:54:05Z) - Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
We propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights.
Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs.
In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance.
arXiv Detail & Related papers (2022-06-15T18:20:01Z) - Dataset Condensation via Efficient Synthetic-Data Parameterization [40.56817483607132]
Machine learning with massive amounts of data comes at a price of huge computation costs and storage for training and tuning.
Recent studies on dataset condensation attempt to reduce the dependence on such massive data by synthesizing a compact training dataset.
We propose a novel condensation framework that generates multiple synthetic data with a limited storage budget via efficient parameterization considering data regularity.
arXiv Detail & Related papers (2022-05-30T09:55:31Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.