Context-Enhanced Language Models for Generating Multi-Paper Citations
- URL: http://arxiv.org/abs/2404.13865v1
- Date: Mon, 22 Apr 2024 04:30:36 GMT
- Title: Context-Enhanced Language Models for Generating Multi-Paper Citations
- Authors: Avinash Anand, Kritarth Prasad, Ujjwal Goel, Mohit Gupta, Naman Lal, Astha Verma, Rajiv Ratn Shah,
- Abstract summary: We propose a method that leverages Large Language Models (LLMs) to generate multi-citation sentences.
Our approach involves a single source paper and a collection of target papers, culminating in a coherent paragraph containing multi-sentence citation text.
- Score: 35.80247519023821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Citation text plays a pivotal role in elucidating the connection between scientific documents, demanding an in-depth comprehension of the cited paper. Constructing citations is often time-consuming, requiring researchers to delve into extensive literature and grapple with articulating relevant content. To address this challenge, the field of citation text generation (CTG) has emerged. However, while earlier methods have primarily centered on creating single-sentence citations, practical scenarios frequently necessitate citing multiple papers within a single paragraph. To bridge this gap, we propose a method that leverages Large Language Models (LLMs) to generate multi-citation sentences. Our approach involves a single source paper and a collection of target papers, culminating in a coherent paragraph containing multi-sentence citation text. Furthermore, we introduce a curated dataset named MCG-S2ORC, composed of English-language academic research papers in Computer Science, showcasing multiple citation instances. In our experiments, we evaluate three LLMs LLaMA, Alpaca, and Vicuna to ascertain the most effective model for this endeavor. Additionally, we exhibit enhanced performance by integrating knowledge graphs from target papers into the prompts for generating citation text. This research underscores the potential of harnessing LLMs for citation generation, opening a compelling avenue for exploring the intricate connections between scientific documents.
Related papers
- HLM-Cite: Hybrid Language Model Workflow for Text-based Scientific Citation Prediction [14.731720495144112]
We introduce the novel concept of core citation, which identifies the critical references that go beyond superficial mentions.
We propose $textbfHLM-Cite, a $textbfH$ybrid $textbfL$anguage $textbfM$odel workflow for citation prediction.
We evaluate HLM-Cite across 19 scientific fields, demonstrating a 17.6% performance improvement comparing SOTA methods.
arXiv Detail & Related papers (2024-10-10T10:46:06Z) - Ground Every Sentence: Improving Retrieval-Augmented LLMs with Interleaved Reference-Claim Generation [51.8188846284153]
RAG has been widely adopted to enhance Large Language Models (LLMs)
Attributed Text Generation (ATG) has attracted growing attention, which provides citations to support the model's responses in RAG.
This paper proposes a fine-grained ATG method called ReClaim(Refer & Claim), which alternates the generation of references and answers step by step.
arXiv Detail & Related papers (2024-07-01T20:47:47Z) - Explaining Relationships Among Research Papers [14.223038413516685]
We propose a feature-based, LLM-prompting approach to generate richer citation texts.
We find a strong correlation between human preference and integrative writing style, suggesting that humans prefer high-level, abstract citations.
arXiv Detail & Related papers (2024-02-20T23:38:39Z) - When Large Language Models Meet Citation: A Survey [37.01594297337486]
Large Language Models (LLMs) could be helpful in capturing fine-grained citation information via the corresponding textual context.
Citations also establish connections among scientific papers, providing high-quality inter-document relationships.
We review the application of LLMs for in-text citation analysis tasks, including citation classification, citation-based summarization, and citation recommendation.
arXiv Detail & Related papers (2023-09-18T12:48:48Z) - CiteBench: A benchmark for Scientific Citation Text Generation [69.37571393032026]
CiteBench is a benchmark for citation text generation.
We make the code for CiteBench publicly available at https://github.com/UKPLab/citebench.
arXiv Detail & Related papers (2022-12-19T16:10:56Z) - Towards generating citation sentences for multiple references with
intent control [86.53829532976303]
We build a novel generation model with the Fusion-in-Decoder approach to cope with multiple long inputs.
Experiments demonstrate that the proposed approaches provide much more comprehensive features for generating citation sentences.
arXiv Detail & Related papers (2021-12-02T15:32:24Z) - MultiCite: Modeling realistic citations requires moving beyond the
single-sentence single-label setting [13.493267499658527]
We release MultiCite, a new dataset of 12,653 citation contexts from over 1,200 computational linguistics papers.
We show how our dataset, while still usable for training classic CCA models, also supports the development of new types of models for CCA beyond fixed-width text classification.
arXiv Detail & Related papers (2021-07-01T12:54:23Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
We use the citation graph of referential links between citing and cited papers.
We observe a sizable improvement in end-to-end information extraction over the state-of-the-art.
arXiv Detail & Related papers (2021-06-03T03:00:12Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
We redefine the task of scientific papers summarization by utilizing their citation graph.
We construct a novel scientific papers summarization dataset Semantic Scholar Network (SSN) which contains 141K research papers in different domains.
Our model can achieve competitive performance when compared with the pretrained models.
arXiv Detail & Related papers (2021-04-07T11:13:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.