PeLiCal: Targetless Extrinsic Calibration via Penetrating Lines for RGB-D Cameras with Limited Co-visibility
- URL: http://arxiv.org/abs/2404.13949v2
- Date: Tue, 23 Apr 2024 04:48:47 GMT
- Title: PeLiCal: Targetless Extrinsic Calibration via Penetrating Lines for RGB-D Cameras with Limited Co-visibility
- Authors: Jaeho Shin, Seungsang Yun, Ayoung Kim,
- Abstract summary: We present PeLiCal, a novel line-based calibration approach for RGB-D camera systems exhibiting limited overlap.
Our method leverages long line features from surroundings, and filters out outliers with a novel convergence voting algorithm.
- Score: 11.048526314073886
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: RGB-D cameras are crucial in robotic perception, given their ability to produce images augmented with depth data. However, their limited FOV often requires multiple cameras to cover a broader area. In multi-camera RGB-D setups, the goal is typically to reduce camera overlap, optimizing spatial coverage with as few cameras as possible. The extrinsic calibration of these systems introduces additional complexities. Existing methods for extrinsic calibration either necessitate specific tools or highly depend on the accuracy of camera motion estimation. To address these issues, we present PeLiCal, a novel line-based calibration approach for RGB-D camera systems exhibiting limited overlap. Our method leverages long line features from surroundings, and filters out outliers with a novel convergence voting algorithm, achieving targetless, real-time, and outlier-robust performance compared to existing methods. We open source our implementation on https://github.com/joomeok/PeLiCal.git.
Related papers
- eWand: A calibration framework for wide baseline frame-based and event-based camera systems [11.735290341808064]
We propose eWand, a new method that uses blinking LEDs inside opaque spheres instead of a printed or displayed pattern.
Our method provides a faster, easier-to-use extrinsic calibration approach that maintains high accuracy for both event- and frame-based cameras.
arXiv Detail & Related papers (2023-09-22T07:51:17Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - SceneCalib: Automatic Targetless Calibration of Cameras and Lidars in
Autonomous Driving [10.517099201352414]
SceneCalib is a novel method for simultaneous self-calibration of extrinsic and intrinsic parameters in a system containing multiple cameras and a lidar sensor.
We resolve issues with a fully automatic method that requires no explicit correspondences between camera images and lidar point clouds.
arXiv Detail & Related papers (2023-04-11T23:02:16Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences.
Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations.
arXiv Detail & Related papers (2023-03-19T04:00:05Z) - A Practical Calibration Method for RGB Micro-Grid Polarimetric Cameras [1.5154438803609351]
Polarimetric imaging has been applied in a growing number of applications in robotic vision.
RGB Polarization cameras can capture both color and polarimetric state of the light in a single snapshot.
It is crucial to calibrate these types of cameras so as to obtain correct polarization measurements.
arXiv Detail & Related papers (2022-08-29T10:39:23Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
We present the first real-time method for motion capture of skeletal pose and 3D surface geometry of hands from a single RGB camera.
In order to address the inherent depth ambiguities in RGB data, we propose a novel multi-task CNN.
We experimentally verify the individual components of our RGB two-hand tracking and 3D reconstruction pipeline.
arXiv Detail & Related papers (2021-06-22T12:53:56Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.