DHRNet: A Dual-Path Hierarchical Relation Network for Multi-Person Pose Estimation
- URL: http://arxiv.org/abs/2404.14025v2
- Date: Sat, 27 Apr 2024 02:48:39 GMT
- Title: DHRNet: A Dual-Path Hierarchical Relation Network for Multi-Person Pose Estimation
- Authors: Yonghao Dang, Jianqin Yin, Liyuan Liu, Pengxiang Ding, Yuan Sun, Yanzhu Hu,
- Abstract summary: Multi-person pose estimation (MPPE) presents a formidable yet crucial challenge in computer vision.
This paper introduces a novel CNN-based single-stage method, named Dual-path Hierarchical Relation Network (DHRNet), to extract instance-to-joint and joint-to-instance interactions concurrently.
- Score: 14.267849773487834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-person pose estimation (MPPE) presents a formidable yet crucial challenge in computer vision. Most existing methods predominantly concentrate on isolated interaction either between instances or joints, which is inadequate for scenarios demanding concurrent localization of both instances and joints. This paper introduces a novel CNN-based single-stage method, named Dual-path Hierarchical Relation Network (DHRNet), to extract instance-to-joint and joint-to-instance interactions concurrently. Specifically, we design a dual-path interaction modeling module (DIM) that strategically organizes cross-instance and cross-joint interaction modeling modules in two complementary orders, enriching interaction information by integrating merits from different correlation modeling branches. Notably, DHRNet excels in joint localization by leveraging information from other instances and joints. Extensive evaluations on challenging datasets, including COCO, CrowdPose, and OCHuman datasets, showcase DHRNet's state-of-the-art performance. The code will be released at https://github.com/YHDang/dhrnet-multi-pose-estimation.
Related papers
- Relation Learning and Aggregate-attention for Multi-person Motion Prediction [13.052342503276936]
Multi-person motion prediction considers not just the skeleton structures or human trajectories but also the interactions between others.
Previous methods often overlook that the joints relations within an individual (intra-relation) and interactions among groups (inter-relation) are distinct types of representations.
We introduce a new collaborative framework for multi-person motion prediction that explicitly modeling these relations.
arXiv Detail & Related papers (2024-11-06T07:48:30Z) - I2SRM: Intra- and Inter-Sample Relationship Modeling for Multimodal
Information Extraction [10.684005956288347]
We present the Intra- and Inter-Sample Relationship Modeling (I2SRM) method for this task.
Our proposed method achieves competitive results, 77.12% F1-score on Twitter-2015, 88.40% F1-score on Twitter-2017, and 84.12% F1-score on MNRE.
arXiv Detail & Related papers (2023-10-10T05:50:25Z) - Modeling Instance Interactions for Joint Information Extraction with
Neural High-Order Conditional Random Field [39.055053720433435]
We introduce a joint IE framework (CRFIE) that formulates joint IE as a high-order Conditional Random Field.
Specifically, we design binary factors and ternary factors to directly model interactions between not only a pair of instances but also triplets.
We incorporate a high-order neural decoder that is unfolded from a mean-field variational inference method.
arXiv Detail & Related papers (2022-12-17T18:45:23Z) - Global-and-Local Collaborative Learning for Co-Salient Object Detection [162.62642867056385]
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images.
We propose a global-and-local collaborative learning architecture, which includes a global correspondence modeling (GCM) and a local correspondence modeling (LCM)
The proposed GLNet is evaluated on three prevailing CoSOD benchmark datasets, demonstrating that our model trained on a small dataset (about 3k images) still outperforms eleven state-of-the-art competitors trained on some large datasets (about 8k-200k images)
arXiv Detail & Related papers (2022-04-19T14:32:41Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
A simple yet effective multi-scale semantics-guided neural network is proposed for skeleton-based action recognition.
MS-SGN achieves the state-of-the-art performance on the NTU60, NTU120, and SYSU datasets.
arXiv Detail & Related papers (2021-11-07T03:50:50Z) - CoADNet: Collaborative Aggregation-and-Distribution Networks for
Co-Salient Object Detection [91.91911418421086]
Co-Salient Object Detection (CoSOD) aims at discovering salient objects that repeatedly appear in a given query group containing two or more relevant images.
One challenging issue is how to effectively capture co-saliency cues by modeling and exploiting inter-image relationships.
We present an end-to-end collaborative aggregation-and-distribution network (CoADNet) to capture both salient and repetitive visual patterns from multiple images.
arXiv Detail & Related papers (2020-11-10T04:28:11Z) - DCR-Net: A Deep Co-Interactive Relation Network for Joint Dialog Act
Recognition and Sentiment Classification [77.59549450705384]
In dialog system, dialog act recognition and sentiment classification are two correlative tasks.
Most of the existing systems either treat them as separate tasks or just jointly model the two tasks.
We propose a Deep Co-Interactive Relation Network (DCR-Net) to explicitly consider the cross-impact and model the interaction between the two tasks.
arXiv Detail & Related papers (2020-08-16T14:13:32Z) - Jointly Cross- and Self-Modal Graph Attention Network for Query-Based
Moment Localization [77.21951145754065]
We propose a novel Cross- and Self-Modal Graph Attention Network (CSMGAN) that recasts this task as a process of iterative messages passing over a joint graph.
Our CSMGAN is able to effectively capture high-order interactions between two modalities, thus enabling a further precise localization.
arXiv Detail & Related papers (2020-08-04T08:25:24Z) - Cascaded Human-Object Interaction Recognition [175.60439054047043]
We introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding.
At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network.
With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding.
arXiv Detail & Related papers (2020-03-09T17:05:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.