Surgical-DeSAM: Decoupling SAM for Instrument Segmentation in Robotic Surgery
- URL: http://arxiv.org/abs/2404.14040v1
- Date: Mon, 22 Apr 2024 09:53:55 GMT
- Title: Surgical-DeSAM: Decoupling SAM for Instrument Segmentation in Robotic Surgery
- Authors: Yuyang Sheng, Sophia Bano, Matthew J. Clarkson, Mobarakol Islam,
- Abstract summary: In safety-critical surgical tasks, prompting is not possible due to lack of per-frame prompts for supervised learning.
It is unrealistic to prompt frame-by-frame in a real-time tracking application, and it is expensive to annotate prompts for offline applications.
We develop Surgical-DeSAM to generate automatic bounding box prompts for decoupling SAM to obtain instrument segmentation in real-time robotic surgery.
- Score: 9.466779367920049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Purpose: The recent Segment Anything Model (SAM) has demonstrated impressive performance with point, text or bounding box prompts, in various applications. However, in safety-critical surgical tasks, prompting is not possible due to (i) the lack of per-frame prompts for supervised learning, (ii) it is unrealistic to prompt frame-by-frame in a real-time tracking application, and (iii) it is expensive to annotate prompts for offline applications. Methods: We develop Surgical-DeSAM to generate automatic bounding box prompts for decoupling SAM to obtain instrument segmentation in real-time robotic surgery. We utilise a commonly used detection architecture, DETR, and fine-tuned it to obtain bounding box prompt for the instruments. We then empolyed decoupling SAM (DeSAM) by replacing the image encoder with DETR encoder and fine-tune prompt encoder and mask decoder to obtain instance segmentation for the surgical instruments. To improve detection performance, we adopted the Swin-transformer to better feature representation. Results: The proposed method has been validated on two publicly available datasets from the MICCAI surgical instruments segmentation challenge EndoVis 2017 and 2018. The performance of our method is also compared with SOTA instrument segmentation methods and demonstrated significant improvements with dice metrics of 89.62 and 90.70 for the EndoVis 2017 and 2018. Conclusion: Our extensive experiments and validations demonstrate that Surgical-DeSAM enables real-time instrument segmentation without any additional prompting and outperforms other SOTA segmentation methods.
Related papers
- SAM 2 in Robotic Surgery: An Empirical Evaluation for Robustness and Generalization in Surgical Video Segmentation [13.609341065893739]
This study explores the zero-shot segmentation performance of SAM 2 in robot-assisted surgery based on prompts.
We employ two forms of prompts: 1-point and bounding box, while for video sequences, the 1-point prompt is applied to the initial frame.
The results with point prompts also exhibit a substantial enhancement over SAM's capabilities, nearing or even surpassing existing unprompted SOTA methods.
arXiv Detail & Related papers (2024-08-08T17:08:57Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
The Segment Anything Model (SAM) has introduced unprecedented potential for polyp segmentation.
SAM's Transformer-based structure prioritizes global and low-frequency information.
CFA integrates a trainable CNN encoder branch with a frozen ViT encoder, enabling the integration of domain-specific knowledge.
arXiv Detail & Related papers (2024-06-30T14:55:32Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - Augmenting Efficient Real-time Surgical Instrument Segmentation in Video with Point Tracking and Segment Anything [9.338136334709818]
We present a novel framework that combines an online point tracker with a lightweight SAM model that is fine-tuned for surgical instrument segmentation.
Sparse points within the region of interest are tracked and used to prompt SAM throughout the video sequence, providing temporal consistency.
Our method achieves promising performance that is comparable to XMem and transformer-based fully supervised segmentation methods.
arXiv Detail & Related papers (2024-03-12T18:12:42Z) - SAR-RARP50: Segmentation of surgical instrumentation and Action
Recognition on Robot-Assisted Radical Prostatectomy Challenge [72.97934765570069]
We release the first multimodal, publicly available, in-vivo, dataset for surgical action recognition and semantic instrumentation segmentation, containing 50 suturing video segments of Robotic Assisted Radical Prostatectomy (RARP)
The aim of the challenge is to enable researchers to leverage the scale of the provided dataset and develop robust and highly accurate single-task action recognition and tool segmentation approaches in the surgical domain.
A total of 12 teams participated in the challenge, contributing 7 action recognition methods, 9 instrument segmentation techniques, and 4 multitask approaches that integrated both action recognition and instrument segmentation.
arXiv Detail & Related papers (2023-12-31T13:32:18Z) - SurgicalPart-SAM: Part-to-Whole Collaborative Prompting for Surgical Instrument Segmentation [66.21356751558011]
The Segment Anything Model (SAM) exhibits promise in generic object segmentation and offers potential for various applications.
Existing methods have applied SAM to surgical instrument segmentation (SIS) by tuning SAM-based frameworks with surgical data.
We propose SurgicalPart-SAM (SP-SAM), a novel SAM efficient-tuning approach that explicitly integrates instrument structure knowledge with SAM's generic knowledge.
arXiv Detail & Related papers (2023-12-22T07:17:51Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
We introduce SurgicalSAM, a novel end-to-end efficient-tuning approach for SAM to integrate surgical-specific information with SAM's pre-trained knowledge for improved generalisation.
Specifically, we propose a lightweight prototype-based class prompt encoder for tuning, which directly generates prompt embeddings from class prototypes.
In addition, to address the low inter-class variance among surgical instrument categories, we propose contrastive prototype learning.
arXiv Detail & Related papers (2023-08-17T02:51:01Z) - TraSeTR: Track-to-Segment Transformer with Contrastive Query for
Instance-level Instrument Segmentation in Robotic Surgery [60.439434751619736]
We propose TraSeTR, a Track-to-Segment Transformer that exploits tracking cues to assist surgical instrument segmentation.
TraSeTR jointly reasons about the instrument type, location, and identity with instance-level predictions.
The effectiveness of our method is demonstrated with state-of-the-art instrument type segmentation results on three public datasets.
arXiv Detail & Related papers (2022-02-17T05:52:18Z) - FUN-SIS: a Fully UNsupervised approach for Surgical Instrument
Segmentation [16.881624842773604]
We present FUN-SIS, a Fully-supervised approach for binary Surgical Instrument.
We train a per-frame segmentation model on completely unlabelled endoscopic videos, by relying on implicit motion information and instrument shape-priors.
The obtained fully-unsupervised results for surgical instrument segmentation are almost on par with the ones of fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-16T15:32:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.