A Multimodal Automated Interpretability Agent
- URL: http://arxiv.org/abs/2404.14394v1
- Date: Mon, 22 Apr 2024 17:55:11 GMT
- Title: A Multimodal Automated Interpretability Agent
- Authors: Tamar Rott Shaham, Sarah Schwettmann, Franklin Wang, Achyuta Rajaram, Evan Hernandez, Jacob Andreas, Antonio Torralba,
- Abstract summary: MAIA is a system that uses neural models to automate neural model understanding tasks.
We first characterize MAIA's ability to describe (neuron-level) features in learned representations of images.
We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.
- Score: 63.8551718480664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper describes MAIA, a Multimodal Automated Interpretability Agent. MAIA is a system that uses neural models to automate neural model understanding tasks like feature interpretation and failure mode discovery. It equips a pre-trained vision-language model with a set of tools that support iterative experimentation on subcomponents of other models to explain their behavior. These include tools commonly used by human interpretability researchers: for synthesizing and editing inputs, computing maximally activating exemplars from real-world datasets, and summarizing and describing experimental results. Interpretability experiments proposed by MAIA compose these tools to describe and explain system behavior. We evaluate applications of MAIA to computer vision models. We first characterize MAIA's ability to describe (neuron-level) features in learned representations of images. Across several trained models and a novel dataset of synthetic vision neurons with paired ground-truth descriptions, MAIA produces descriptions comparable to those generated by expert human experimenters. We then show that MAIA can aid in two additional interpretability tasks: reducing sensitivity to spurious features, and automatically identifying inputs likely to be mis-classified.
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
We evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development.
To our surprise, we did not find evidence of significant improvement on tasks when users were provided with any of the saliency maps.
These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.
arXiv Detail & Related papers (2023-12-10T23:13:23Z) - FIND: A Function Description Benchmark for Evaluating Interpretability
Methods [86.80718559904854]
This paper introduces FIND (Function INterpretation and Description), a benchmark suite for evaluating automated interpretability methods.
FIND contains functions that resemble components of trained neural networks, and accompanying descriptions of the kind we seek to generate.
We evaluate methods that use pretrained language models to produce descriptions of function behavior in natural language and code.
arXiv Detail & Related papers (2023-09-07T17:47:26Z) - FACT: Learning Governing Abstractions Behind Integer Sequences [7.895232155155041]
We introduce a novel view on the learning of concepts admitting complete finitary descriptions.
We lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models.
To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Toolkit.
arXiv Detail & Related papers (2022-09-20T08:20:03Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - Quality Metrics for Transparent Machine Learning With and Without Humans
In the Loop Are Not Correlated [0.0]
We investigate the quality of interpretable computer vision algorithms using techniques from psychophysics.
Our results demonstrate that psychophysical experiments allow for robust quality assessment of transparency in machine learning.
arXiv Detail & Related papers (2021-07-01T12:30:51Z) - Classification Under Human Assistance [29.220005688025378]
We show that supervised learning models trained to operate under different automation levels can outperform those trained for full automation as well as humans operating alone.
Experiments on synthetic and real-world data from several applications in medical diagnosis illustrate our theoretical findings.
arXiv Detail & Related papers (2020-06-21T16:52:37Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.