AutoAD III: The Prequel -- Back to the Pixels
- URL: http://arxiv.org/abs/2404.14412v1
- Date: Mon, 22 Apr 2024 17:59:57 GMT
- Title: AutoAD III: The Prequel -- Back to the Pixels
- Authors: Tengda Han, Max Bain, Arsha Nagrani, Gül Varol, Weidi Xie, Andrew Zisserman,
- Abstract summary: We propose two approaches for constructing AD datasets with aligned video data, and build training and evaluation datasets using these.
We develop a Q-former-based architecture which ingests raw video and generates AD, using frozen pre-trained visual encoders and large language models.
We provide new evaluation metrics to benchmark AD quality that are well-matched to human performance.
- Score: 96.27059234129788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating Audio Description (AD) for movies is a challenging task that requires fine-grained visual understanding and an awareness of the characters and their names. Currently, visual language models for AD generation are limited by a lack of suitable training data, and also their evaluation is hampered by using performance measures not specialized to the AD domain. In this paper, we make three contributions: (i) We propose two approaches for constructing AD datasets with aligned video data, and build training and evaluation datasets using these. These datasets will be publicly released; (ii) We develop a Q-former-based architecture which ingests raw video and generates AD, using frozen pre-trained visual encoders and large language models; and (iii) We provide new evaluation metrics to benchmark AD quality that are well-matched to human performance. Taken together, we improve the state of the art on AD generation.
Related papers
- AD-LLM: Benchmarking Large Language Models for Anomaly Detection [50.57641458208208]
This paper introduces AD-LLM, the first benchmark that evaluates how large language models can help with anomaly detection.
We examine three key tasks: zero-shot detection, using LLMs' pre-trained knowledge to perform AD without tasks-specific training; data augmentation, generating synthetic data and category descriptions to improve AD models; and model selection, using LLMs to suggest unsupervised AD models.
arXiv Detail & Related papers (2024-12-15T10:22:14Z) - NowYouSee Me: Context-Aware Automatic Audio Description [19.232338111340148]
We introduce $mathrmCA3D$, the pioneering unified Context-Aware Automatic Audio Description system.
The proposed $mathrmCA3D$ is the first end-to-end trainable system that only uses visual cue.
arXiv Detail & Related papers (2024-12-13T09:40:37Z) - DistinctAD: Distinctive Audio Description Generation in Contexts [62.58375366359421]
We propose DistinctAD, a framework for generating Audio Descriptions that emphasize distinctiveness to produce better narratives.
To address the domain gap, we introduce a CLIP-AD adaptation strategy that does not require additional AD corpora.
In Stage-II, DistinctAD incorporates two key innovations: (i) a Contextual Expectation-Maximization Attention (EMA) module that reduces redundancy by extracting common bases from consecutive video clips, and (ii) an explicit distinctive word prediction loss that filters out repeated words in the context.
arXiv Detail & Related papers (2024-11-27T09:54:59Z) - AutoAD-Zero: A Training-Free Framework for Zero-Shot Audio Description [92.72058446133468]
Our objective is to generate Audio Descriptions (ADs) for both movies and TV series in a training-free manner.
We use the power of off-the-shelf Visual-Language Models (VLMs) and Large Language Models (LLMs)
Our approach, named AutoAD-Zero, demonstrates outstanding performance (even competitive with some models fine-tuned on ground truth ADs) in AD generation for both movies and TV series, achieving state-of-the-art CRITIC scores.
arXiv Detail & Related papers (2024-07-22T17:59:56Z) - Video Annotator: A framework for efficiently building video classifiers
using vision-language models and active learning [0.0]
Video Annotator (VA) is a framework for annotating, managing, and iterating on video classification datasets.
VA allows for a continuous annotation process, seamlessly integrating data collection and model training.
VA achieves a median 6.8 point improvement in Average Precision relative to the most competitive baseline.
arXiv Detail & Related papers (2024-02-09T17:19:05Z) - AutoAD II: The Sequel -- Who, When, and What in Movie Audio Description [95.70092272297704]
We develop a new model for automatically generating movie AD, given CLIP visual features of the frames, the cast list, and the temporal locations of the speech.
We demonstrate how this improves over previous architectures for AD text generation in an apples-to-apples comparison.
arXiv Detail & Related papers (2023-10-10T17:59:53Z) - AutoAD: Movie Description in Context [91.98603496476215]
This paper presents an automatic Audio Description (AD) model that ingests movies and outputs AD in text form.
We leverage the power of pretrained foundation models, such as GPT and CLIP, and only train a mapping network that bridges the two models for visually-conditioned text generation.
arXiv Detail & Related papers (2023-03-29T17:59:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.